About the issue of cleaning exhaust gases from tpps and metallurgical enterprises from so2: regeneration of carbonate-sulfate melt with natural gas

PDF

https://doi.org/10.53939/15605655/2022_2_17

Dosmukhamedov N.K., Egizekov M.G., Zholdasbai E.E., Kurmanseitov M.B., Argyn A.A.

Abstract: General concept is proposed for a technology of purifying waste gases of TPPs and metallurgical enterprises from SO2 and CO2 . The fundamental possibility of carrying out the process of regeneration of carbonate-sulfate melt with natural gas is shown. Based on experimental work it has been established that the process of regeneration of a carbonate-sulfate melt with natural gas provides high rates of sulfate reduction and the achievement of maximum up to 99% sulfur recovery from the melt in the form of H2 S. It has been determined that the removal of sulfur from a carbonate-sulfate melt by bubbling with natural gas can be carried out in the operating temperature range of an absorption column for purifying exhaust gases as 500-550 ºС. It is shown that the process of regeneration of a carbonate-sulfate melt with natural gas is a relatively simple one-stage process that proceeds at a high rate. This allows the regeneration column to be integrated with an absorption column where sulfur is captured from the exhaust gases. The removal of sulfur in the form of H2 S provides considerable range of choice in terms of the final commercial product: either sulfuric acid (by dry combustion of H2 S) or elemental sulfur (by the Claus process), both have significant commercial value. The proposed method for the regeneration of a carbonate-sulfate melt simplifies the technology of purifying waste gases from sulfur dioxide with a carbonate melt of alkali metals. Moreover, it can be easily integrated into the general technological scheme of existing metallurgical enterprises without special material and energy costs.
Keywords: waste gases, sulfur dioxide, absorption, carbonate-sulfate melt, regeneration, natural gas, sulfur.

References
1 Kalygın V. G. Promyshlennaya ekologiya: uchebnoe posobie dlya vuzov. – M.: Akademiya. – 2010. – 432 s.
2 Dosmukhamedov N.K., Zholdasbay Е.Е., Kurmanseitov M.B., Argyn A.A., Zheldibay M. A. Technological experiments of joint smelting of lead intermediate products, recycled materials and high-sulfur copper-zinc concentrate. // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. – №2 (313). – 2020. – P.5-13.                                                                                                                    3 Dosmukhamedov N. K., Argyn A. A., Zholdasbay Е. Е., Kurmanseitov M. B. Converting of copper-lead matte: loss of gold and silver with slag // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. – 2020. – № 3 (314). – P.5- 14.
4 Aliev G.M. Tehnika pyleulavlivaniya i ochistki promyshlennyh gazov. – M.: Metallurgiya. – 2012. –544 s.
5 Crundwell F.K., et al., Extractive Metallurgy of Nickel, Cobalt and Platinum-Group Metals. 2011, Oxford: Elsevier. 583.
6 Davenport W.G., et al., Extractive Metallurgy of Copper. 2002. Oxford: Pergamon. 417.
7 Habashi F. Copper metallurgy at the crossroads // Journal of Mining and Metallurgy B: Metallurgy. – 2007. – Vol.43(1). – P. 1-19.
8 Nolan P. Flue Gas Desulfurization Technologies for Coal-Fired Power Plants // in Coal-Tech 2000 International Conference. 2000. Jakarta, Indonesia.
9 Mcillroy R.A., Atwood G.A. and Major C.J. Absorption of Sulfur-Dioxide by Molten Carbonates // Environmental Science & Technology. – 1973. – Vol.7(11). – P. 1022-1028.
10 Yosim S.J., et al., Chemistry of Molten Carbonate Process for Sulfur Oxides Removal from Stack Gases // Advances in Chemistry Series. – 1973. – Vol.127. – P. 174-182.
11 Moore K.A. Recovery of Sulfur Values from Molten Salt. 1973: US Patent 3867514.
12 Krebs T. and Nathanson G.M. Reactive collisions of sulfur dioxide with molten carbonates // Proceedings of the National Academy of Sciences of the United States of America. – 2010. – Vol.107(15). – P. 6622-6627.
13 Kaplan V., Wachtel E. and Lubomirsky I. Carbonate melt regeneration for efficient capture of SO2 from coal combustion // RSC Advances. – 2013. – Vol.3(36). – P. 15842-15849.
14 Lubomirsky I. and Kaplan V. Apparatus and method for removing sulfur dioxide from flue gases US Patent 8852540.- 2014.
15 Lubomirsky I. and Kaplan V. Apparatus and method for removing sulfur dioxide from flue gases EP Patent 2723473. – 2016.
16 Schlesinger M.E., et al., Extractive Metallurgy of Copper. – 2011. Amsterdam: Elsevier.
17 Sinclair R.J. The Extractive Metallurgy of Zinc // Carlton Victoria, Australia: The Australasian Institute of Mining and Metallurgy. – 2005. – P. 303.
18 Sinclair R.J. The Extractive Metallurgy of Lead // Carlton Victoria, Australia: The Australasian Institute of Mining and Metallurgy. – 2009. – P. 311.
19 17 Kaplan V., Dosmukhamedov N., Lubomirsky I. Development of highly efficient technology of purification of SO2-containing flue gases with production of valuable secondary product // The 40th International Technical Conference on Clean Coal & Fuel Systems. May 31 to June 4, 2015, Clearwater, Florida, USA.
20 Dosmukhamedov N., Kaplan V., Wachtel E., Lubomirsky I. Carbonate melt-based flue gas desulphurization: material balance and economic advantage // International Journal Oil, Gas and Coal Technology. – 2018. – Vol. 18, Nos. ½. – Р. 25-38.
21 Dosmukhamedov N.K., Kaplan V., Zholdasbay E.E., Lubomirski I. Fiziko-himicheskie osnovy tehnologii ochistki serosoderjashih othodyashih gazov rasplavami karbonatov shelochnyh metallov // Mejdunarodnyi jurnal prikladnyh i fundamentalnyh issledovanii. – 2015. – № 9, Ch.2. – S.255-259.
22 Dosmukhamedov N.K., Lezin A.N., Tokenov N.M. Ecoanalytics in mining metallurgy // Internationaler
Kongress Fachmesse EURO-ECO. – 2012. Hannover, (Germany), 29-30 November. – P. 44-45.

Комментарии закрыты.