News of Kazakhstan Science
Новости науки Казахстана
научно – технический журнал (ISSN 1560-5655)
МРНТИ 29.03.30
N1-2025
https://doi.org/10.53939/1560-5655_2025_1_115
Чигамбаева Н.Н., Нурмукан А.Е.
Аннотация. Выбор данного типа гидрата в качестве объекта исследования
обусловлен актуальными проблемами очистки воздушного слоя планеты от
углерода.
Проведена серия экспериментов по регистрации изменений колебательных
спектров в тонкой пленке криоконденсированной смеси воды и углекислого
газа при различных концентрациях
Целью данного исследования было определение наличия гидратов углекис-
лого газа в условиях высокого вакуума и низкотемпературной конденсации из
газовой фазы. Приведена интерпретация изменений колебательных спектров
в зависимости от температуры отжига образца и концентрации углекисло-
го газа для диапазона частот 2210-2260, 2270-2290, 2310-2380, 2800-3700,
3590-3610,3580-3720,3685-3720 см-1. При сравнении пиков адсорбции 15%
смеси углекислого газа с водой при температуре конденсации 15 К и даль-
нейшем отжиге образца.
Ключевые слова: декарбонизация, углеродный выброс, криоконденсаты,
оптические свойства, вода, оксид углерода
Список литературы/References
1 Dendy S. and Carolyn K. Clathrate Hydrates of Natural Gases, 3rd ed. CRC
press, 2007.
2 Staykova D. K., Kuhs W. F., Salamatin A. N., and Hansen T. “Formation of porous
gas hydrates from ice powders: Diffraction experiments and multistage model,”
Journal of Physical Chemistry B, vol. 107, no. 37, pp. 10299–10311, 2003, doi:
10.1021/jp027787v.
3 Fleyfel F. and Devlin J. P. “Carbon Dioxide Clathrate Hydrate Epitaxial Growth.
pdf,” no. 12, pp. 3811–3815, 1991.
4 Shinbayeva A., Drobyshev A., and Drobyshev N. “The standardization and certification
procedures of cryogenic equipment in Kazakhstan,” Low Temperature
Physics, vol. 41, no. 7, pp. 571–573, 2015, doi: 10.1063/1.4927050.
5 Tylinski M., Chua Y. Z., Beasley M. S., Schick C., and Ediger M. D. “Vapor-deposited
alcohol glasses reveal a wide range of kinetic stability,” Journal of Chemical
Physics, vol. 145, no. 17, 2016, doi: 10.1063/1.4966582.
6 Drobyshev A., Aldiyarov A., Sokolov D., and Shinbayeva A. “Refractive indices
and density of cryovacuum-deposited thin films of methane in the vicinity of the
α-β-transition temperature,” Low Temperature Physics, vol. 43, no. 6, pp. 909–
913, 2017, doi: 10.1063/1.4985981.
7 Aldiyarov A., Drobyshev A., Sokolov D., and Shinbayeva A. “Polarizability of
Methane Deposits,” Journal of Low Temperature Physics, vol. 187, no. 5–6, 2017,
doi: 10.1007/s10909-017-1775-1.
8 Aldiyarov A. U., Sokolov D. Y., Nurmukan A. Y., and Ramos M. A. “Refractive
Index at Low Temperature of Tetrachloromethane and Tetrafluoroethane Cryovacuum
Condensates,” ACS Omega, vol. 5, no. 20, pp. 11671–11676, May 2020, doi:
10.1021/acsomega.0c00969.
9 Drobyshev A., Aldiyarov A., Sokolov D., Shinbayeva A., and Tokmoldin N. “Refractive
indices vs deposition temperature of thin films of ethanol, methane and
nitrous oxide in the vicinity of their phase transition temperatures,” Fizika Nizkikh
Temperatur, vol. 43, no. 10, 2017.
10 Drobyshev A., Aldiyarov A., and Sokolov D., “IR spectrometric studies of thin
film cryovacuum condensates of methane and methane-water mixtures,” Low
Temperature Physics, vol. 43, no. 3, 2017, doi: 10.1063/1.4981520.
11 Drobyshev A., Aldiyarov A., Nurmukan A., Sokolov D., and Shinbayeva A. “IR
Studies of Thermally Stimulated Structural Phase Transformations in Cryovacuum
Condensates of Freon 134a,” Low Temperature Physics, vol. 44, no. 8, pp.
831–839, 2018, doi: 10.1063/1.5049168.
12 Drobyshev A., Aldiyarov A., Nurmukan A., Sokolov D., and Shinbayeva A.
“Structure transformations in thin films of CF 3 -CFH 2 cryodeposites. Is there a
glass transition and what is the value of T g ?,” Applied Surface Science, vol. 446,
pp. 196–200, 2018, doi: 10.1016/j.apsusc.2018.01.270.
13 Li X. et al. “Compact open-path sensor for fast measurements of CO2 and H2O
using scanned wavelength modulation spectroscopy with 1f-phase method,” Sensors
(Switzerland), vol. 20, no. 7, 2020, doi: 10.3390/s20071910.
14 Shamu A., Miedema H., Nijmeijer K., and Borneman Z. “The effect of supercritical
CO2 on the permeation of dissolved water through PDMS membranes,”
Journal of CO2 Utilization, vol. 35, no. February 2019, pp. 145–152, 2020, doi:
10.1016/j.jcou.2019.09.011.
15 Drobyshev A., Aldiyarov A., Sokolov D., Shinbayeva A., and Tokmoldin N. “Refractive
indices vs deposition temperature of thin films of ethanol, methane and nitrous
oxide in the vicinity of their phase transition temperatures,” Low Temperature
Physics, vol. 43, no. 10, pp. 1521–1524, 2017, doi: 10.1063/1.5008415.
16 Bouilloud M., Fray N., Bénilan Y., Cottin H., Gazeau M. C., and Jolly A. “Bibliographic
review and new measurements of the infrared band strengths of pure
molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO,”
Monthly Notices of the Royal Astronomical Society, vol. 451, no. 2, pp. 2145–
2160, 2015, doi: 10.1093/mnras/stv1021.
17 Kumar R., Lang S., Englezos P., and Ripmeester J. “Application of the ATR-IR
spectroscopic technique to the characterization of hydrates formed by CO2,CO2/
H2 and CO 2/H2/C3H8,” Journal of Physical Chemistry A, vol. 113, no. 22, pp.
6308–6313, 2009, doi: 10.1021/jp901670e.
18 Dean J. F. et al. “East Siberian Arctic inland waters emit mostly contemporary
carbon,” Nature Communications, vol. 11, no. 1, pp. 1–10, 2020, doi: 10.1038/
s41467-020-15511-6.
19 Murphy P. J. and Roberts S. “Laser Raman spectroscopy of differential partitioning
in mixed-gas clathrates in H2O-C02-N2-CH4 fluid inclusions: Implications
for microthermometry,” Geochimica et Cosmochimica Acta, vol. 59, no. 23, pp.
4809–4824, Dec. 1995, doi: 10.1016/0016-7037(95)00321-5.
20 Bertie J.E. and Devlin J.P. “INFRARED SPECTRA OF DEUTERATED ISOTOPOMERS
ISOLATED IN H2O CLATHRATES,” J. Chem. Phys., vol. 78, no. April,
p. 6340, 1984.
21 Rothman L. S. and Young L. D. G. “Infrared energy levels and intensities of
carbon dioxide—II,” Journal of Quantitative Spectroscopy and Radiative Transfer,
vol. 25, no. 6, pp. 505–524, Jun. 1981, doi: 10.1016/0022-4073(81)90026-1.
Авторлар туралы мәліметтер
Чигамбаева Нургуль Нурбаевна – техника ғылымдарының магистрі,
Әл-Фараби атындағы Қазақ ұлттық университеті, Алматы қ., Қазақстан,
сhigambayeva_nurgul@live.kaznu.kz
Жұмысқа қосқан үлесі: эксперимент, деректерді өңдеу, талқылау, қолжазба-
ны дайындау, әдебиеттерді іздеу, соңғы мақала дизайны
Нурмукан Асель Ержумаевна – PhD, Әл-Фараби атындағы Қазақ ұлттық уни-
верситеті, Алматы қ., Қазақстан, assel.nurmukan@kaznu.kz
Жұмысқа қосқан үлесі: эксперимент, деректерді өңдеу, талқылау, қолжазба-
ны дайындау, әдебиеттерді іздеу
Сведения об авторах
Чигамбаева Нургуль Нурбаевна – Магистр технических наук, Казахский наци-
ональный университет им. аль-Фараби, г. Алматы, Казахстан,
сhigambayeva_nurgul@live.kaznu.kz
Вклад в работу: эксперимент, обработка данных, обсуждение, подготовка
рукописи, поиск литературы, оформление конечной статьи
Нурмукан Асель Ержумаевна – PhD, Казахский национальный университет
им. аль-Фараби, г. Алматы, Казахстан, assel.nurmukan@kaznu.kz
Вклад в работу: эксперимент, обработка данных, обсуждение, подготовка
рукописи, поиск литературы
Information about the authors
Chigambayeva Nurgul Nurbaevna – Master of technical sciences,
Al-Farabi Kazakh national university, Almaty с., Kazakhstan,
сhigambayeva_nurgul@live.kaznu.kz
Contribution to the work: experiment, data processing, discussion, manuscript
preparation, literature search, the design of the final article
Nurmukan Assel Yerzhumaevna – PhD, Al-Farabi Kazakh national university,
Almaty с., Kazakhstan, assel.nurmukan@kaznu.kz
Contribution to the work: experiment, data processing, discussion, manuscript
preparation, literature search