DERIVATION AND ANALYSIS OF THE DYNAMIC EQUATIONS OF MOBILE ROBOTS WITH RANDOM DISTURBING FORCES BASED ON THE PRINCIPLE OF LEAST GAUSS FORCE

PDF

https://doi.org/10.53939/15605655/2022_4_25

Tuleshov А.К., Seidakhmet A.Zh., Abduraimov A.E., Kamal A.N.

Abstract. In this paper, the derivation of the equations of dynamics of a four-wheeled mobile robot is carried out using the variational principle of least constraint, known as the Gauss principle. Equations of nonholonomic constraints are obtained. The function of the measure of coercion of the four-wheeled mobile robot is composed. Dynamic equations based on the Gauss principle are obtained taking into account the dynamic
characteristics of two DC motors. Methods for taking into account the friction forces on the wheels and random perturbations due to the unevenness of the canvas are proposed. On the Maple platform, an algorithm and a program for modeling the dynamics of a mobile robot based on the Gauss principle were developed the correctness of the obtained equations of robot motion were proved.
Key words: Mobile wheeled robot, Gauss principle, equations of dynamics, motion modeling, disturbing forces.

References
1 Bruno Siciliano, Oussama Khatib (Eds.). Springer Handbook of Robotics// Chapter 24 and 49. Wheeled Robots. 2nd Edition. Verlag Berlin Heidelberg, 2016
2 P. Corke, J. Roberts, J. Cunningham, and D. Hainsworth, Handbook of Robotics. Berlin, Germany: Springer, 2008, pp. 1127-1150.
3 K. Fu, R. Gonsales, K. Li. Robototekhnika. Perevod s angl.- M.:Mir, 1989. -624 s., [K. Fu, R. Gonzalez, K. Lee. Robotics. Translation from English – M.: Mir, 1989. -624 p.]
4 Hollerbach J.M. Dynamic Scalling of Manipulator Trajectories, Trans. ASME, J. Dyn. Systems, Measurement and Control, 106, pp. 102-106, 1984.
5 Luh J. Y. S., Walker M.W., Paul R. P. On Line – Computational Scheme for Mechanical Manipulators, Trans. ASME, J. Dyn. Systems, Measurement and Control, 120, pp. 69-76, 1980.
6 Lee C. S. G., Lee B. H., Nigam R. Development of the Generalized d’Alembert Equations of Motion for Mechanical Manipulators, Proc.2nd Conf. Decision and Control, San Antonio, Tex., pp. 1205-1210, 1983.
7 Walker M.W., Orin D.E. Efficient Dynamic Computer Simulation of Robotic Mechanisms, Trans. ASME, J. Systems, Measurement and Control, 104, pp. 205-211, 1982.
8 G. Campion, G. Bastin, B. dAndrea-Novel: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robotics Autom. 12, 47–62 (1996)
9 Bruno Siciliano, Oussama Khatib (Eds.). Springer Handbook of Robotics// Chapter 24. Wheeled Robots. 2nd Edition. Verlag Berlin Heidelberg 2016
10 W. Chung: Nonholonomic Manipulators, Springer Tracts Adv. Robotics, Vol. 13 (Springer, Berlin, Heidelberg 2004)
11 Levitskij N.I. Kolebaniya v mekhanizmakh. Uch.pos. –M.: Nauka, 1988.-336 s.[ Levitsky N.I. Vibrations in mechanisms. Uch.pos. –M.: Nauka, 1988.-336 p.]
12 Bruno Siciliano, Oussama Khatib (Eds.). Springer Handbook of Robotics// Chapter 47. Motion Planning and Obstacle Avoidance. 2nd Edition. Verlag Berlin Heidelberg 2016.
13 Otchet po NIR po grantovomu finansirovaniyu (GF.2012) na temu: «Issledovanie dinamiki, razrabotka sistemy` upravleniya, proektirovanie i sozdanie opy`tnogo obrazcza mobil`nogo robota» na 2012-2014 gody` (# gosregistraczii 0112RK0206). [Report on research on grant financing (GF.2012) on the topic: “Research of dynamics, development of a control system, design and creation of a prototype of a mobile robot” for 2012-2014 (state registration number 0112RK0206).]
14 Bissembayev K., Jomartov A., Tuleshov A., Dikambay T. Analysis of the Oscillating Motion of a Solid Body on Vibrating Bearers // Machines, 2019. – V. 7. – №3. – С. 58. (Scopus: CiteScore percentile Mechanical Engineering = 68; WoS).
15 Tuleshov, A., Ozhikenov, K., Ozhiken A. The Dynamical Processes Adaptive Stabilization in the Robot Electric Drives Control System, ISSN 1996-3947: International Journal of Experimental Education. – Issue 2. – 2013. – pp. 63-65.
16 Tuleshov A., Kassymbek Ozhikenov, R. Utebayev, E. Tuleshov. Modeling the Dynamics of Robot Motor Drive Control System// Applied Mechanics and Materials. -2014. – Volume 467. – pp. 510-515. ISSN: 1662-7482(Scopus: SJR 0.415)
17 Zegzhda S.A., Soltakhanov Sh.Kh., Yushkov M.P. Uravneniya dvizheniya negolonomny`kh sistem i variaczionny`e princzipy` mekhaniki. – SPb.: Izd-vo Sankt-Peterburgskogo un-ta, 2002. – 408 s.[ Zegzhda S.A., Soltakhanov Sh.Kh., Yushkov M.P. Equations of motion of nonholonomic systems and variational principles of mechanics. – St. Petersburg: Publishing house of St. Petersburg University, 2002. – 408 p.]

 

Комментарии закрыты.