Solar element coated with multi-crystalline porous silicon

№2-2023

https://doi.org/10.53939/15605655/2023_2_6


Dikhanbayev K. K., Ikramova S. B., Myrzaly Ye.B., Zhaylybayev I.T., Torakhmet S.

Abstract: In this paper, we consider a silicon solar cell (SC) with an antireflection coating made of porous multicrystalline silicon, deposited by electrochemical anodization to the n-layer of the p-n-junction. The minimum of the reflection spectrum of porous μ-Si with an increase in the etching anodization current density shifts to the short-wavelength region, and also the grain boundaries of the surface of multicrystalline silicon are actively passivated by hydrogen bonds: SiH, SiH2 , SiH3. It is shown that the photosensitivity of μ-Si SC samples with porous μ-Si in the short-wavelength region in the range of 400-600 nm is higher due to low surface reflection in comparison with the initial sample. It is shown that the use of a modified etchant made
it possible to increase the plant efficiency of the SC from 13.5% to 16% due to the porosity of the layer. The output parameters of the obtained solar cell are shown.
Keywords: Silicon, multicrystalline, porosity, antireflection, passivation, current density, anodization, light transmission.

References
1 Gonik M.A. Directional Crystallization of Multicrystalline Silicon in a Melt Convection and Gas Exchange. Izvestiya Vysshikh Zavedenii. // Materialy Electronnoi Tekhniki. (Materials of Electronics Engineering). – 2015. – Vol.18(2). – P. 95-102.
2 R. Bairava Ganesh. Growth and characterization of multicrystalline silicon ingots by directional solidification for solar cell applications./Bairava Ganesh, Birgit Ryningen, Martin Syvertsen, Ivan Saha, Harsham Tathgar, G. Rajeswaran.//Energy Procedia. – 2011. – P. 317-376.
3 K.M. Yeh. High-quality Multicrystalline Silicon growth for solar cells by grain-controlled directional solidification./K.M. Yeh, C.K. Hseih, W.C. Hsu, C.W. Lan. //Progress in Photovoltaics: Research and Applications. – 2010. – Vol.18. – P. 265-271.
4 К.К. Диханбаев, С.М. Манаков, Т.И. Таурбаев. Использование термодиффузии фосфора через слой пористого кремния в кремниевых солнечных элементах.//Сборник трудов Муждународной конференции. – Санкт-Петербург: Изд-во Политехничекого университета, 2016. – С. 236-237.
5 A. G. Ulyashin, M. Scherff, R. Hussein, R. Job, W. R. Fahrner. “Comparison of Multicrystalline Silicon Surfaces after Wet Chemical Etching and Hydrogen Plasma Treatment: Application for the Heterojunction Solar Cells”//Technical Digest “12th International Photovoltaic Science and Engineering Conference”, June 11th – 15th, 2001, Cheju Island, Korea, p. 209 (2001).
6 A. Hajjaji, A. Rebhi, I. Ka, K. Trabelsi, M. Gaidi, B. Bessais,M.A. El Khakani. Pulsed-laser-deposited lead sulfide nanoparticles based decoration of porous silicon layer as an effective passivation treatment for multicrystalline silicon. //Applied Surface Science. – 2020. – Vol.505. -Р.144590.
7 M. Achref, A. Bessadok, L. Khezami, S, Mokraoui, M. Ben Rabha. Effective surface passivation on multicrystalline silicon using aluminum/porous silicon nanostructures.//Surfaces and Interfaces. – 2020. – Vol. 18. -Р.100391.
8 Shaoyuan Li, Wenhui Ma, Xiuhua Chen, Keqiang Xie, Yuping Li, Xiao He, Xi Yang, Yun Lei. Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. // Applied Surface Science. – 2016. – Vol. 369. -P. 232-240.
9 Jianqiang Wang, Fuqiang Zhong, Huan Liu, Lei Zhao, Wenjing Wang, Xixiang Xu, Yongzhe Zhang, Hui Yan. Influence of the textured pyramid size on the performance of silicon heterojunction solar cell. //Solar Energy. -2021. -P. 114-119.
10 E. Osorio, R. Urteaga, L.N. Acquaroli, G. Garcia-Salgado, H. Juarez, R.R. Koropecki. Optimization of porous silicon multilayer as antireflection coatings for solar cells. //Solar energy Materials and Solar Cells. – 2011. -Vol. 95, Issue 11. – P. 3069-3073.

Комментарии закрыты.