Surface phenomena in graphite and obtaining graphene from it

МРНТИ 29.19.16

№1-2024

https://doi.org/10.53939/1560-5655_2024_1_19


Yurov V.M., Zhangozin K.N., Zhanabergenov T.K., Kargin D.B.

Abstract: The article offers an overview of our latest theoretical work on graphite and graphene. A model is proposed for determining the thickness of the surface layer of graphite, from which the strength of graphite and graphene can be calculated and the length of nanocracks in the surface layer of these materials can be determined. A model of the mechanism of graphite splitting and graphene production is proposed. It was shown that it is possible to split graphite using a pulsed picosecond laser for heating. A model of the mechanism of graphite splitting by aqueous solutions is proposed. The model is based on an original innovative technique for using microcluster water in combination with ultrasound and an electric field to obtain powder graphene. A model is proposed for assessing the Peierls–Nabarro barrier, which leads to inhibition of dislocations in the surface layer of graphene. It is shown that the Peierls–Nabarro barrier in graphene is maximum for a monovacancy.
Key words: graphite, graphene, surface, model, defect, mechanism.
References
1 Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva V., Firsov A.A. Electric field effect in atomically thin carbon films // Science, 2004, V. 306, № 5696. – P. 666-669.
2 Zhang T. Graphene. From Theory to Applications. – Springer, 2022. – 142 р.
3 Gupta R.K. (Editor) 3D Graphene. Fundamentals, Synthesis and Emerging Applications. – Springer, 2023. – 441 р.
4 Ermagambet B.T., Kazankapova M.K., Kasenov B.K., Ajtmagambetova A.Zh., Kuany`shbekov E.E. Sintez grafenosoderzhashhikh nanomaterialov na osnove koksa metodom e`lektrodugovogo razryada // Khimiya tverdogo topliva, 2021, № 6. – S. 28-40.
5 Zhangozin K.N., Zhanabergenov T.K., Kargin D.B. O novom metode polucheniya poroshkovogo grafena // Vestnik ENU im. L. Gumilyova, 2021, tom 136, № 3. – S. 8-16.
6 Zhangozin K.N., Keshuov S.A., Zhanabergenov T.K. «Sposob polucheniya grafena». Respublika Kazakhstan, Patent 35840, 28 07 2021.
7 Zhangozin K.N., Keshuov S.A., Zhanabergenov T.K. «Poluchenie grafena». Respublika Kazakhstan, Patent 6985, 28 07 2021.
8 Zhangozin K.N. Novy`j metod polucheniya grafena interkalyacziej grafita mikroklasternoj vodoj. – Almaty`: Darkhan, 2023. – 102 s.
9 Yurov V., Zhangozin K. Surface layer thickness, defects and strength of graphite // The scientific heritage, 2023, № 128. – Р. 20-27.
10 Zhmurikov E.I., Bubnenkov I.A., Dryomov V.V., Samarin S.I., Pokrovskij A.S., Khar`kov D.V. Grafit v nauke i yadernoj tekhnike. – Novosibirsk, 2013. – 193 s.
11 Bundy F.P., Bassett W.A., Weathers M.S., et al. The Pressure-Temperature Phase and Transformation Diagram for Carbon; Updated Through 1994 // Carbon, 1996, V. 34, N 2. – P. 141-153.
12 Erasov V.S., Oreshko E.I. Prichiny` zavisimosti mekhanicheskikh kharakteristik treshhinostojkosti materiala ot razmerov obrazcza // Aviaczionny`e materialy` i tekhnologii, 2018, №3(52). – S. 56-64.
13 Yurov V., Zhangozin K. Аbout the mechanism of graphite splitting // International independent scientific journal, 2024, №58. – Р. 29-40.
14 Novoselov K. S. Grafen: materialy` Flatlandii // Uspekhi fizicheskikh nauk, 2011, T. 181, № 12 – S. 1299-1311.
15 Van Noorden R. Production: Beyond sticky tape // Nature, 2012, V. 483, № 7389. – P. S32-S33.
16 Hernandez Y., Nicolosi V., Lotya M., Blighe F.M., Sun Z.Y., DeS., McGovern I.T., Holland B., Byrne M., Gun’ko Y.K., Boland J.J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A. C. High-yield production of graphene by liquid- phase exfoliation of graphite // Nature Nanotechnology, 2008, V. 3, № 9. – P.563-568.
17 Wu Y.H., Yu T., Shen Z.X. Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications // Journal of Applied Physics, 2010, V. 108, № 7,071301.
18 Kim K.S., Zhao Y., Jang H., Lee S.Y., Kim J.M., Kim K.S.,Ahn J.H., Kim P., Choi J.Y., Hong B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes // Nature, 2009, V. 457, № 7230. – P. 706-710.
19 Sutter P.W., Flege J.-I., Sutter E.A. Epitaxial graphene on ruthenium // Nature. mater., 2008, V. 7, N. 5. – P. 406-411.
20 Nikiforov A.A., Kondratenko M.S., Kapitanova O.O., Gallyamov M.O. E`lektrokhimicheskoe rasshheplenie grafita v sverkhkriticheskikh sredakh // DAN RAN. Khimiya, nauki o materialakh, 2020, tom 492- 493. – S. 128-133.
21 Lebedev S.P. Poluchenie grafena metodom dissocziativnogo ispareniya (sublimaczii) poverkhnosti SiC i issledovanie svojstv struktur grafen/SiC. – Dissertacziya kandidata fiz.-mat. nauk, Sankt-Peterburg, 2021. – 164 s.
22 Kochergin V.K. Besplatinovy`e katalizatory` vosstanovleniya kisloroda dlya toplivny`kh e`lementov na osnove plazmoe`lektrokhimicheski rasshheplennogo grafita. – Avtoreferat kandidata khimicheskikh nauk, Moskva, 2022. – 26 s.
23 Kononenko T.V. Lazerno-induczirovanny`e grafitizirovanny`e mikrostruktury` v ob`eme almaza. – Dissertacziya doktora
fiziko-matematicheskikh nauk, Moskva, 2022. – 196 s.
24 Yurov V., Zhangozin K. Some questions of the theory of solution viscosity // German International Journal of Modern Science, 2023, №71. – Р. 34-41.
25 Yurov V.M., Zhangozin K.N. Аt the mechanism of graphite splitting bouby aqueous solutions // Znanstvena misel journal, 2024, №86. – Р. 41-49.
26 Lorenzen L.H. Process for preparing mcroclustered water. Patent Number: 5,711,95. Date of Patent: Jan. 27, 1998.
27 Lorenzen L.H. Microclustered water. Patent Number: 6,033,678. Date of Patent: Mar. 7, 2000.
28 Nilsson A., Pettersson L.G.M. Perspective on the structure of liquid water // Chemical Physics, 2011, V. 389. – P. 1-34

29 Ignatov I., Mosin O.V., Velikov B. Matematicheskie modeli, opisy`vayushhie strukturu vody` // Internet-zhurnal «Naukovedenie». 2013. №3. – C. 1-26.
30 Chen M, Ko H.-Yu, Remsing R.C. and etc. Ab initio theory and modeling of water // PNAS, 2017, Vol. 114, No. 41. – P. 1-12.
31 Chaplin M.F. Structure and Properties of Water in its Various States. Encyclopedia of Water: Science, Technology, and Society, edited by Patricia A. Maurice, 2019. – Р. 1-19.
32 Zakharov S.D., Mosyagina I.V. Klasternaya struktura vody` (obzor). Preprint Fizicheskij in-t im. P.N. Lebedeva RAN. – Moskva, 2011. – 24 s.
33 Polyanskaya A.V., Polyanskij A.M., Polyanskij V.A. Svyaz` yavlenij perenosa s kharakteristikami klasternoj struktury` vody` // Zhurnal tekhnicheskoj fiziki, 2019, tom 89, vy`p. 6. – S. 958-964.
34 Yurov V., Zhangozin K. Аbout the mechanism of mica splitting // Sciences of Europe, 2024, № 133. – Р. 97-104.
35 Yurov V., Zhangozin K. On the question of stone-weles defects in graphene // International independent scientific journal, 2024, №58. – Р. 42-53.
36 Yurov V., Zhangozin K. Barrier Peierls – Nabarro and migration monovacancies and multivacancies in grapheme // Norwegian Journal of development of the International Science, 2024, No 124. – P. 91-95.
37 Usatenko O.V., Gorbach A.V., Kovalev A.S. E`nergiya i bar`er Pajerlsa dislokaczii (kinka) Frenkelya-Kontorovoj // FTT, 2001, tom 43, vy`p. 7. – S. 1202-1206.
38 Grinberg B.A., Ivanov M.A., Kruglikov N.A., Antonova O.V. O vozmozhnosti avtoblokirovki dislokaczij v razlichny`kh materialakh // FMM, 2009, tom. 108, №1. – S. 93-104.
39 Fan T., Luo L., Ma L., Tang B., Peng L., Ding V. Issledovanie polny`kh a-dislokaczij v chistom magnii na osnove pervichny`kh princzipov // PMT, 2014, T. 55, N4. – S. 141-151.
40 Petukhov B.V. Dinamika dislokaczij v tverdy`kh rastvorakh kovalentny`kh kristallov // FTT, 2016, tom 58, vy`p. 9. – S. 1764-1768.

Комментарии закрыты.