Careful choice of carbonyl-containing cmps, and optimisation of Buchwald-Hartwig crosscoupling reaction conditions

МРНТИ 31.25.19

№2-2024

PDF

https://doi.org/10.53939/1560-5655_2024_2_18

Mukhanov D.K.

Abstract. In this study, new nitrogen-rich conjugated microporous polymers were synthesized using the Buchwald-Hartwig cross-coupling reaction. The synthesized polymers were characterized using various methods, including X-ray diffraction (XRD), ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Brunauer-Emmett-Teller (BET) surface area
analysis, and pore size distribution (PSD) determination using non-local density functional theory (NLDFT). The results provide important information about the structure and properties of synthesized materials, which contributes to a deeper understanding of their characteristics. The obtained characteristics of the material allow us to judge the quality and purity of the obtained polymers, which is important for further research, as well as serve as a basis for the development of new synthesis methods or improvement of existing technologies.
Key words: Conjugated microporous polymers, Buchwald-Hartwig cross-combination reaction, Porous organic materials, synthesis.

References
1 Lee, J.S. M. & Cooper, A.I. Advances in Conjugated Microporous Polymers. Chem. Rev. 120, 2171–2214 (2020).
2 Zhang, C. et al. Bifunctionalized conjugated microporous polymers for carbon dioxide capture. Polymer (Guildf). 61, 36–41 (2015).
3 Huang, Q. et al. Layered Thiazolo [5,4- d] Thiazole-Linked Conjugated Microporous Polymers with Heteroatom Adoption for Efficient Photocatalysis Application. ACS Appl. Mater. Interfaces 11, 15861–15868 (2019).
4 Chen, L., Honsho, Y., Seki, S. & Jiang, D. Light-harvesting conjugated microporous polymers: Rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J. Am. Chem. Soc. 132, 6742– 6748 (2010).
5 Chen, L., Yang, Y. & Jiang, D. CMPs as scaffolds for constructing porous catalytic frameworks: A built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 132, 9138–9143 (2010).
6 Khaligh, A. & Li, Z. Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Trans. Veh. Technol. 59, 2806–2814 (2010).
7 Chang, L., Stacchiola, D. J. & Hu, Y. H. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance. ACS Appl. Mater. Interfaces 9, 24655–24661 (2017).
8 Liu, X., Xu, Y. & Jiang, D. Conjugated microporous polymers as molecular sensing devices: Microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. J. Am. Chem. Soc. 134, 8738–8741 (2012).
9 Herde, Z. D., Dharmasena, R., Sumanasekera, G., Tumuluru, J. S. & Satyavolu, J. Impact of hydrolysis on surface area and energy storage applications of activated carbons produced from corn fiber and soy hulls. Carbon Resour. Convers. 3, 19–28 (2020).
10 Chen, J. et al. Tunable Surface Area, Porosity, and Function in Conjugated Microporous Polymers. Angew. Chemie – Int. Ed. 58, 11715–11719 (2019).
11 Jiang, J. X. et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chemie – Int. Ed. (2007) doi:10.1002/anie.200701595.
12 Liao, Y., Weber, J. & Faul, C. F. J. Conjugated microporous polytriphenylamine networks. Chem. Commun. (2014) doi:10.1039/c4cc03026e.
13 Liao, Y., Wang, H., Zhu, M. & Thomas, A. Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald–Hartwig Coupling. Adv. Mater. 30, (2018).

Комментарии закрыты.