Композитные материалы на основе диоксида кремния и серебра из биологических источников в качестве нового адсорбента для удаления ионов ртути из воды

№1-2023

PDF

https://doi.org/10.53939/15605655/2023_1_6

Азат С., Жантикеев У., Тауанов У. Ж., Бексеитова К.

Аннотация. В данном исследовании представлен синтез нового композитного адсорбента с использованием диоксида кремния из риса, наночастиц серебра и триэтоксисилана в качестве сырья для удаления водных ионов ртути из воды. Новый композиционный материал был синтезирован путем модификации поверхности кремнезема на основе рисовой шелухи силановыми группами и дальнейшего декорирования наночастицами серебра. Определение характеристик проводили с помощью инфракрасного спектрального анализа с преобразованием Фурье (FT-IR), адсорбции-десорбции N2 (Брунауэра-Эмметта-Теллера) и термогравиметрического анализа (ТГА). Были протестированы образцы синтетической и настоящей ртутьсодержащей воды из озера-водохранилища Балкылдак, Казахстан. Результаты показали, что сродство композита к ртути велико, а механизм удаления — адсорбция, сопровождаемая реакцией амальгамирования между серебром и ртутью.
Ключевые слова: адсорбция, наночастицы серебра, кремнезем рисовой шелухи, композиты кремнезем / Ag, водные ионы ртути.

Список литературы

1 Ganzagh, M.A.A., Yousefpour, M., Taherian, Z., 2016. The removal of mercury (II) from water by Ag supported on nanomesoporous silica. Journal of Chemical Biology. 9, 127–142. https://doi.org/10.1007/s12154- 016-0157-5.
2 Arshadi, M., Mousavinia, F., Khalafi-Nezhad, A., Firouzabadi, H., Abbaspourrad. A., 2017. Adsorption of mercury ions from wastewater by a hyperbranched and multifunctionalized dendrimer modified mixed-oxides nanoparticles. Journal of Colloid and Interface Science. 505, 293–306. https://doi.org/10.1016/j.jcis.2017.05.052.
3 Atwood, D.A., Zaman, M.K., 2006. Mercury removal from water. In: Atwood D.A. (Eds.) Recent Developments in Mercury Science. Structure and Bonding, Springer, Berlin, Heidelberg, pp. 163–182. https://doi. org/10.1007/430_013.
4 Girginova, P.I., Daniel-da-Silva, A.L., Lopes, C.B., Figueira, P., Otero, M., Amaral, V.S., Pereira, E., Trindade, T., 2010. Silica coated magnetite particles for magnetic removal of Hg2+ from water. Journal of Colloid and Interface Science. 345, 234–240. https://doi.org/10.1016/j.jcis.2010.01.087.
5 Ullrich, S.M., Ilyushchenko, M.A., Kamberov, I.M., Tanton. T.W., 2007. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh. Science of the Total Environment. 381, 1–16. https://doi.org/10.1016/j.scitotenv.2007.02.033.
6 Schroeder, W.H., Munthe, J., Lindqvist, O., 1989. Cycling of mercury between water, air, and soil compartments of the environment. Water, Air, and Soil Pollution, pp. 337–347. https://doi.org/10.1007/BF00283335.
7 Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., 2004. Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental Pollution. 131, 323–336. https:// oi.org/10.1016/j.envpol.2004.01.010.
8 Bootharaju, M.S., Pradeep, T., 2010. Uptake of toxic metal ions from water by naked and monolayer protected silver nanoparticles: An X-ray photoelectron spectroscopic investigation. The Journal of Physical Chemistry C. 114, 8328–8336. https://doi.org/10.1021/jp101988h.
9 Khunphonoi, R., Khamdahsag, P., Chiarakorn, S., Grisdanurak, N., Paerungruang, A., Predapitakkun, S., 2015. Enhancement of elemental mercury adsorption by silver supported material. Journal of Environmental Sciences. 32, 207–216. https://doi.org/10.1016/j.jes.2015.01.008.
10 Yu, Y., Addai-Mensah, J., Losic. D., 2012. Functionalized diatom silica microparticles for removal of mercury ions. Science and Technology of Advanced Materials. 13, 1–11. https://doi.org/10.1088/1468-6996/13/1/015008.
11 Kumar, S., Sangwan, P., Dhankhar, R., Mor, V., Bidra, S., 2013. Utilization of Rice Husk and Their Ash: A Review. Research Journal of Chemical and Environmental Sciences. 1, 126–129. Available Online http://www. aelsindia.com.
12 Abo-El-Enein, S.A., Eissa, M.A., Diafullah, A.A., Rizk, M.A., Mohamed, F.M., 2009. Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash. Journal of Hazardous Materials. 172, 574–579. https://doi.org/10.1016/j.jhazmat.2009.07.036.
13 Sun, L., Gong, K., 2001. Silicon-based materials from rice husks and their applications. Industrial & Engineering Chemistry Research. 40, 5861–5871. https://doi.org/10.1021/ie010284b.
14 Katok, K.V., Whitby, R.L.D., Fayon, F., Bonnamy, S., Mikhalovsky, S.V., Cundy, A.B., 2013. Synthesis and application of hydride silica composites for rapid and facile removal of aqueous mercury. ChemPhysChem, 14, 4126–4133. https://doi.org/10.1002/cphc.201300832.
15 Katok, K.V., Whitby, R.L.D., Fukuda, T., Maekawa, T., Bezverkhyy, I., Mikhalovsky, S.V., Cundy, A.B., 2012. Hyperstoichiometric interaction between silver and mercury at the nanoscale. Angewandte Chemie International Edition. 51, 2632–2635. https://doi.org/10.1002/anie.201106776.
16 Henglein, A., Brancewicz, C., 1997. Absorption spectra and reactions of colloidal bimetallic nanoparticles containing mercury. Chemistry of Materials. 9, 2164–2167. https://doi.org/10.1021/cm970258x.
17 Henglein, A., 1998. Colloidal silver nanoparticles: Photochemical preparation and interaction with O2, CCl4, and some metal ions. Chemistry of Materials. 10, 444–450. https://doi.org/10.1021/cm970613j.
18 Harika, V.K., Kumar, V.B., Gedanken, A., 2018. One-pot sonochemical synthesis of Hg-Ag alloy microspheres from liquid mercury. Ultrasonics Sonochemistry. 40, 157–165. https://doi.org/10.1016/j.ultsonch.2017.07.008.
19 Sing, K.S.W., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). IUPAC Commission on Colloid and Surface Chemistry Including Catalysis. Pure and Applied Chemistry. 57, 603–619. https://doi.org/10.1351/ pac198557040603.

Авторлар туралы мәліметтер
Азат Сейтхан ​​– PhD докторы, Сәтбаев университетінің доценті, Инженерлік зертхана, Алматы, Қазақстан Әл-Фараби атындағы Қазақ ұлттық университеті, Алматы, Қазақстан  e-mail: seytkhan.azat@gmail.com

Жантікеев Ұлан – ҚазҰУ PhD докторанты, әл-Фараби атындағы ҚазҰУ, Алматы, Қазақстан  e-mail: nurlybekov_ulan@mail.ru
Тауанов Жандос – PhD докторы, ҚазҰУ оқытушысы, әл-Фараби атындағы ҚазҰУ, Алматы, Қазақстан  e-mail: zhtauanov@nu.edu.kz
Бексейітова Қалампыр – PhD докторанты, әл-Фараби атындағы ҚазҰУ, Алматы, Қазақстан  e-mail: bekalsu@mail.ru

Сведения об авторах
Azat Seithan — доктор PhD, ассоциированный профессор, Satbaev University, Лаборатория инженерного профиля, Алматы, Казахстан

Казахский национальный университет имени аль-Фараби, Алматы, Казахстан  e-mail: seytkhan.azat@gmail.com
Zhantikeyev Ulan — PhD докторант КазНУ, Казахский национальный университет имени аль-Фараби, Алматы, Казахстан  e-mail: nurlybekov_ulan@mail.ru
Tauanov Zhandos- доктор PhD, преподаватель КазНУ, Казахский национальный университет имени аль-Фараби, Алматы, Казахстан
 e-mail: zhtauanov@nu.edu.kz
Bekseitova Kalampyr- PhD докторант, Казахский национальный университет имени аль-Фараби, Алматы, Казахстан  e-mail: bekalsu@mail.ru

Information about the authors
Azat Seithan — Doctor PhD, Associate Professor, Satbaev University, Engineering Laboratory, Almaty, Kazakhstan Al-Farabi Kazakh National University, Almaty, Kazakhstan  e-mail: seytkhan.azat@gmail.com

Zhantikeyev Ulan — PhD doctoral student of KazNU, Al-Farabi Kazakh National University, Almaty, Kazakhstan  e-mail: nurlybekov_ulan@mail.ru
Tauanov Zhandos — PhD, lecturer at KazNU, Al-Farabi Kazakh National University, Almaty, Kazakhstan  e-mail: zhtauanov@nu.edu.kz
Bekseitova Kalampyr- PhD doctoral student, Al-Farabi Kazakh National University, Almaty, Kazakhstan  e-mail: bekalsu@mail.ru

Комментарии закрыты.