Күріш қауызы және сабаннан биочар алу

№2-2023

https://doi.org/10.53939/15605655/2023_2_25


Аппазов Н.О., Акылбеков Н.И., Нарманова Р.А., Ахатаев Н.А., Жаппарбергенов Р.У., Канжар С.А.

Түйіндеме: Мақалада күріш қауызы мен сабан сияқты ауылшаруашылық өсімдіктерінің қалдықтарынан биокөмір алу бойынша зерттеулердің нәтижелері келтірілген. Үрдіс ұзақтығы және температура тәрізді термолиздің оңтайлы жағдайлары таңдалды. Термолиз өнімдері йодқа қатысты адсорбциялық белсенділікпен, суға қатысты жалпы кеуек көлемімен және көлемдік тығыздықпен сипатталады. Алынған өнімдердің кеуекті құрылымы сканерлік электронды микроскоп арқылы зерттелді. Зерттеу нәтижелері бойынша термолиз ұзақтығы 30 минут болатын қауыз бен сабаннан алынған биокөмірлердің йод бойынша сорбциялық сипаттамалары және судағы кеуек көлемі төмен екендігі анықталды. Термолиз ұзақтығының ұлғаюымен сорбциялық сипаттамалары жақсарады, қабықшалар үшін оңтайлы термолиз ұзақтығы 500°C температурада 60 минут, ал сабан үшін термолиздің оңтайлы ұзақтығы 300°C температурада 60 минут. Ең жақсы нұсқа – ұзақтығы 60 минут және термолиз температурасы 300°С, йод бойынша адсорбциялық белсенділігі 54,61%, су бойынша жалпы кеуек көлемі 0,941 см3 /г және көлемдік тығыздығы 300°С болатын күріш сабанынан алынған биокөмір. 169,29 г/дм3 . Күріш қауызынан және сабаннан алынған биокөмір 4300 және 5000 есе үлкейту кезінде сканерленген электронды микроскоп арқылы зерттелді, олардың кеуекті құрылымы дамыған.
Түйін сөздер: биочар, күріш қауызы, күріш сабаны, термолиз, қайта өңдеу, тыңайтқыш, жаңартылатын отын.

Әдебиеттер
1 Azargohar, R., & Dalai, A. K. (2006). Biochar as a precursor of activated carbon [Article]. Applied Biochemistry and Biotechnology, 131(1-3), 762-773.
2 Hayes, M. H. B. (2006). Biochar and biofuels for a brighter future [Letter]. Nature, 443(7108), 144-144. https://doi.org/10.1038/443144c.
3 Karaosmanoglu, F., Isigigur-Ergundenler, A., & Sever, A. (2000). Biochar from the straw-stalk of rapeseed plant [Article]. Energy & Fuels, 14(2), 336-339. https://doi.org/10.1021/ef9901138.
4 Ozcimen, D., & Karaosmanoglu, F. (2004). Production and characterization of bio-oil and biochar from rapeseed cake [Article]. Renewable Energy, 29(5), 779-787. https://doi.org/10.1016/j.renene.2003.09.006.
5 Purevsuren, B., Avid, B., Tesche, B., & Davaajav, Y. (2003). A biochar from casein and its properties [Article]. Journal of Materials Science, 38(11), 2347-2351. https://doi.org/10.1023/a:1023980429410.
6 Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8), 629-634. https://doi. org/10.1071/sr07109.
7 Larson, R. W. (2007). Using biochar for cost-effective CO2 sequestration in soils.
8 Rondon, M. A., Lehmann, J., Ramirez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common
beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43(6), 699-708. https://doi.org/10.1007/s00374-006-0152-z.
9 Woods, W. I., Falcao, N. P. S., & Teixeira, W. G. (2006). Biochar trials aim to enrich soil for smallholders. Nature, 443(7108), 144-144. https://doi.org/10.1038/443144b.
10 Suerbaev, H. A., Chepajkin, E. G., Dzhiembaev, B. Z., Appazov, N. O., & Abyzbekova, G. M. (2007). Catalytic hydroxycarbonylation of isobutylene with carbon monoxide and polyhydric alcohols in the presence of the Pd(acac)(2)-PPh3-TsOH system. Petroleum Chemistry, 47(5), 345-347. https://doi.org/10.1134/ s0965544107050064.
11 Appazov NO, Zhusupbek UA, Turmanov RA, Lyubchyk SB, Lyubchyk AI, Lyubchyk SI, Lygina OS, Bainazarova SR, Bazarbayev BM (2019) Method for obtaining activated carbon from rice straw and husk [Sposob poluchenija aktivirovannogo uglja iz risovoj solomy i sheluhi]. Patent for utility model of the Republic of Kazakhstan 3892 [Patent na poleznuju model’ Respubliki Kazahstan 3892]. (In Russian).
12 Arutyunyan, T. V., Korystova, A. F., Kublik, L. N., Levitman, M. K., Shaposhnikova, V. V., Appazov, N. O., Narmanova, R. A., Ibadullayeva, S. Z., & Korystov, Y. N. (2014). Camel Thorn Extract Reduces Activity of Angiotensin-Converting Enzyme in Rat Aorta Increased during Aging and Treatment with NO-Synthase Inhibitor. Bulletin of Experimental Biology and Medicine, 158(2), 222-224. https://doi.org/10.1007/s10517-014- 2727-2.
13 Yespanova I.D., Zhusupova L.A., Tapalova A.S., Appazov N.O. (2018) Microwave activation of addition of 1-hexene and butanoic acid reaction // News of the National Academy of Sciences of the Republic of Kazakhstan-Series Chemistry and Technology. 1: 63-69. ISSN 2518-1491 (Online), ISSN 2224-5286 (Print).
14 Appazov N.O., Seitzhanov S.S., Zhunissov A.T., Narmanova, R.A. (2017) Synthesis of Cyclohexyl Isovalerate by Carbonylation of Isobutylene with Carbon Monoxide and Cyclohexanol in the Presence of Pd(PPh3)(4)-PPh3-TsOH and Its Antimicrobial Activity // Russian Journal of Organic Chemistry. 53(10): 1596- 1597. ISSN: 1608-3393 (Online), ISSN: 1070-4280. doi: 10.1134/S1070428017100189.
15 Lyubchyk, S., Shapovalova, O., Lygina, O., Oliveira, M. C., Appazov, N., Lyubchyk, A., Charmier, A. J., Lyubchik, S., & Pombeiro, A. J. L. (2019). Integrated Green Chemical Approach to the Medicinal Plant Carpobrotus edulis Processing [Article]. Scientific Reports, 9, 12, Article 18171. https://doi.org/10.1038/s41598- 019-53817-8.
16 Suerbaev K.A., Chepaikin E.G., Appazov N.O., Dzhiembaev B.Z. (2012) Hydroalkoxycarbonylation of isobutylene with polyhydric alcohols in the presence of catalytic systems based on palladium compounds and tertiary phosphines // Petroleum Chemistry. 52(3): 189-193. ISSN: 1555-6239 (Online), ISSN: 0965-5441. doi: 10.1134/S0965544112030127.
17 Suerbaev, K. A., Kudaibergenov, N. Z., Appazov, N. O., & Zhaksylykova, G. Z. (2016). Synthesis of L-menthyl isovalerate by esterification of isovaleric acid with L-menthol under microwave irradiation. Russian Journal of Organic Chemistry, 52(4), 585-586. https://doi.org/10.1134/s1070428016040205.
18 Sun, L. Y., Deng, J. Y., Fan, C. H., Li, J., & Liu, Y. L. (2020). Combined effects of nitrogen fertilizer and biochar on greenhouse gas emissions and net ecosystem economic budget from a coastal saline rice field in southeastern China. Environmental Science and Pollution Research, 27(14), 17013-17022. https://doi. org/10.1007/s11356-020-08204-6;
19 Aamer, M., Shaaban, M., Hassan, M. U., Ying, L., Tang, H. Y., Ma, Q. Y., Munir, H., Rasheed, A., Li, X. M., Ping, L., & Huang, G. Q. N2 O Emissions Mitigation in Acidic Soil Following Biochar Application Under Different Moisture Regimes. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-020-00311-0.
20 Singh, S. V., Chaturvedi, S., Dhyani, V. C., & Kasivelu, G. (2020). Pyrolysis temperature influences the characteristics of rice straw and husk biochar and sorption/desorption behaviour of their biourea composite. Bioresource Technology, 314, Article 123674. https://doi.org/10.1016/j.biortech.2020.123674.
21 Xu, X. T., He, C., Yuan, X., Zhang, Q., Wang, S. L., Wang, B. H., Guo, X. M., & Zhang, L. (2020). Rice straw biochar mitigated more N2 O emissions from fertilized paddy soil with higher water content than that derived from ex situ biowaste. Environmental Pollution, 263, Article 114477. https://doi.org/10.1016/j.envpol.2020.114477.
22 Mukome, F. N. D., Buelow, M. C., Shang, J. T., Peng, J., Rodriguez, M., Mackay, D. M., Pignatello, J. J., Sihota, N., Hoelen, T. P., & Parikh, S. J. (2020). Biochar amendment as a remediation strategy for surface soils impacted by crude oil. Environmental Pollution, 265(PT A), Article 115006. https://doi.org/10.1016/j.envpol.2020.115006.
23 Narmanova RA, Filonov AE., Appazov NO, Puntus IF, Ahmetov LI, Funtikova TI, Turmanov RA, Omarov EA, Bazarbayev BM (2019) Bacterial strains association for removing oil and oil products from soils and waters under conditions of a sharply continental and hot desert climate [Associacija shtammov bakterij dlja udalenija nefti i nefteproduktov iz gruntov i vod v uslovijah rezko kontinental’nogo i zharkogo aridnogo klimata]. Patent for invention of the Republic of Kazakhstan 33715 [Patent na izobretenie Respubliki Kazahstan]. (In Russian).
24 Bisenov K.A., Narmanova R.A., Appazov N.O. (2020). Physical and chemical studies of the oil sludge hydrocarbon composition and the prospects for their use in the technology of expanded clay production // News of NAS RK. Series of chemistry and technology. 5(443): 28-37. https://doi.org/10.32014/2020.2518-1491.77.
25 Narmanova R.A., Bishimbayev V.K., Tapalova A.S., Appazov N.O. (2020). Polymer additive effect on the structural and mechanical properties of the organic part of oil bituminous rock. // News of NAS RK. Series of chemistry and technology. 5(443): 141-150. https://doi.org/10.32014/2020.2518-1491.91.
26 Bissenov K.A., Uderbayev S.S., Saktaganova N.A. (2016) Physicochemical Analysis of Structure of Foamed Concrete with Addition of Oil Sludges // Research Journal of Pharmaceutical Biological and Chemical Sciences. 7(4): 1701-1708.
27 Montayev S.A., Zharylgapov S.M., Bisenov K.A., Shakeshev B.T., Almagambetova M.Z. (2016) Investigating Oil Sludges and Their Application as Energy Efficient and Modifying Component in Ceramic Pastes // Research Journal of Pharmaceutical Biological and Chemical Sciences. 7(3): 2407-2415. ISSN: 0975-8585.
28 Shalbolova U., Narmanova R., Elpanova M. (2012) Methodical peculiarities of tariff setting at oil transportation via main pipelines // Actual problems of economics. 138: 540-555. ISSN: 1993-6788.
29 Lu, H. F., Bian, R. J., Xia, X., Cheng, K., Liu, X. Y., Liu, Y. L., Wang, P., Li, Z. C., Zheng, J. F., Zhang, X. H., Li, L. Q., Joseph, S., Drosos, M., & Pan, G. X. (2020). Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil – A rice farm trial. Geoderma, 376, Article 114567. https://doi.org/10.1016/j.geoderma.2020.114567.
30 Usowicz, B., Lipiec, J., Lukowski, M., Bis, Z., Usowicz, J., & Latawiec, A. E. (2020). Impact of biochar addition on soil thermal properties: Modelling approach. Geoderma, 376, Article 114574. https://doi. org/10.1016/j.geoderma.2020.114574.
31 Bashir, S., Hussain, Q., Zhu, J., Fu, Q. L., Houben, D., & Hu, H. Q. (2020). Efficiency of KOH-modified rice straw-derived biochar for reducing cadmium mobility, bioaccessibility and bioavailability risk index in red soil. Pedosphere, 30(6), 874-882. https://doi.org/10.1016/s1002-0160(20)60043-1.
32 Li, Q. L., Wang, M., Fu, Q., Li, T. X., Liu, D., Hou, R. J., Li, H., Cui, S., & Ji, Y. (2020). Short-term influence of biochar on soil temperature, liquid moisture content and soybean growth in a seasonal frozen soil area. Journal of Environmental Management, 266, Article 110609. https://doi.org/10.1016/j.jenvman.2020.110609.
33 Ran, C., Gulaqa, A., Zhu, J., Wang, X. W., Zhang, S. Q., Geng, Y. Q., Guo, L. Y., Jin, F., & Shao, X. W. (2020). Benefits of Biochar for Improving Ion Contents, Cell Membrane Permeability, Leaf Water Status and Yield of Rice Under Saline-Sodic Paddy Field Condition. Journal of Plant Growth Regulation, 39(1), 370-377. https://doi.org/10.1007/s00344-019-09988-9.
34 Seleiman, M. F., Alotaibi, M. A., Alhammad, B. A., Alharbi, B. M., Refay, Y., & Badawy, S. A. (2020). Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake. Agronomy-Basel, 10(6), Article 790. https://doi.org/10.3390/agronomy10060790.
35 Wang, D. Y., Felice, M. L., & Scow, K. M. (2020). Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Applied Soil Ecology, 152, Article 103570. https://doi.org/10.1016/j.apsoil.2020.103570.
36 GOST 6217. Crushed active charcoal. Technical conditions [Ugol’ aktivnyj drevesnyj droblenyj. Tehnicheskie uslovija]. Moscow, Russia, 2003. (In Russian).
37 GOST 17219. Active coals. Method for determining the total pore volume by water [Ugli aktivnye. Metod opredelenija summarnogo ob#ema por po vode]. Moscow, Russia, 1988. (In Russian).
38 GOST 16190. Sorbents. Bulk density determination method [Sorbenty. Metod opredelenija nasypnoj plotnosti]. Moscow, Russia, 1970. (In Russian).

 

 

Комментарии закрыты.