Humidity measurement is based on the optical fiber sensor

PDF

https://doi.org/10.53939/15605655/2022_2_35

Khabay А., Tuleshov Y.A., Shadymanova A.A., Sadykov S.K., Bayturganova V.K.

Abstract: Currently, it is necessary to further improve the sensitivity, selectivity, reliability and response time of sensors. An optical fiber based humidity sensor has been investigated with interest because of its advantages such as high sensitivity, fast response, compact size and anti-electromagnetic resistance. Proposed the infrasonic laser sensitivity to humidity-dependent based on optical fibers of the Fabry-Perot interferometers experimentally demonstrated. Based on these analyses, the principle of operation of an optical fiber sensor that measures humidity is proposed. Providing the principle of the working optical fiber sensor,which measures the humidity based on these analyzes.
Keywords: temperature sensor, humidity sensor, Fabry–Perot Interferometer, relative humidity, single mode fiber.

References
1 Kolpakov, S.A.; Gordon, N.T.; Mou, C.; Zhou, K. Toward a new generation of photonic humidity sensors. Sensors 2014, 14, 3986–4013.
2 Clemens Eder, Virgilio Valente, Nick Donaldson, Andreas Demosthenous, “A CMOS Smart Temperature and Humidity Sensor with Combined Readout” 14, 17192-17211; doi:10.3390/s140917192 Sensors 2014.
3 Carlo Macaroni, Michele. A, Caponero, Rosaria D, Amato, Daniela Lo Presti, Emiliano Schena. “Fiber Bragg Grating Measuring System for Simultaneous Monitoring of Temperature and Humidity in Mechanical Ventilation” Sensors doi: 10.3390/s170407492 April 2017.
4 Fan, L.; Bao, Y. Review of fiber optic sensors for corrosion monitoring in reinforced concrete. Cem. Concr. Compos. 2021, 120, 10402
5 W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuator B, vol. 174, pp. 563-569, July 2012.
6 C. Huang, W. Xie, M. Yang, J. Dai, and B. Zhang, “Optical Fiber Fabry– Perot Humidity Sensor Based on Porous Al2O3 Film,” IEEE Photon. Technol. Lett., vol. 27, no. 20, pp. 2127-2130, Oct. 2015.
7 J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Opt. Express, vol. 21, no. 5, pp. 6313-6320, Mar. 2013.
8 C. Zhao, Q. Yuan, L. Fang, X. Gan, and J. Zhao, “High-performance humidity sensor based on a polyvinyl alcohol-coated photonic crystal cavity,” Opt. Lett., vol. 41, no. 23, pp. 5515-5518, Dec. 2016.
9 Lagakos, N., Bucaro, J. and Jarzynski, J. Temperature-induced optical phase shifts in fibers. Appl. Opt., 1981, 20, 2305-2308.
10 W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors,” J. Ligthw. Technol., vol. 30, no. 8, pp. 1090–1096, Apr. 2012.
11 X. Chen, W. Zhang, C. Liu, Y. Hong, and D. J. Webb, “Enhancing the humidity response time of polymer optical fiber Bragg grating by using laser micromachining,” Opt. Express, vol. 23, no. 20, pp. 25942- 25949, Oct. 2015.
12 G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express, vol. 24, no. 2, pp. 1206- 1213, Jan. 2016.
13 C. Massaroni, M. A. Caponero, R. D’Amato, D. L. Presti, and E. Schena, “Fiber Bragg Grating Measuring System for Simultaneous Monitoring of Temperature and Humidity in Mechanical Ventilation,” Sensors, vol. 17, no. 4, pp. 749, Apr. 2017.
14 C. Wang, B. Zhou, H. Jiang, and S. He, “Agarose Filled Fabry–Perot Cavity for Temperature SelfCalibration Humidity Sensing,” IEEE Photon. Technol. Lett., vol. 28, no. 19, pp. 2027-2030, Oct. 2016.
15 S. Pevec, and D. Donlagic, “Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature,” Opt. Lett., vol. 40, no. 23, pp. 5646-5649, Dec. 2015.
16 B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators B, vol. 251, pp. 180–184, May 2017.
17 Bariain, C.; Matias, I.R.; Arregui, F.J.; Lopez-Amo, M. “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel”. Sens. Actuators B Chem. 2000, 69, 127–131, doi:10.1016/S0925- 4005(00)00524-4.
18 Z. Liu, Z. Tan, B. Yin, Y. Bai, and S. Jian, “Refractive index sensing characterization of a singlemodecladdingless-singlemode fiber structure based fiber ring cavity laser,” Opt. Express, vol. 22, no. 5, pp. 5037-5042, Mar. 2014.
19 X. Bai, D. Fan, S. Wang, S. Pu, and X. Zeng, “Strain sensor based on fiber ring cavity laser with photonic crystal fiber in-line Mach–Zehnder interferometer,” IEEE Photonics J., vol. 6, no. 4, pp. 6801608, Aug.2014.
20 J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature Sensor Based on Fiber Ring Laser With Sagnac Loop,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 794– 797, Apr. 2016.
21 W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors,” J. Ligthw. Technol., vol. 30, no. 8, pp. 1090–1096, Apr. 2012.
22 T. Liu, J. Yin, J. Jiang, K. Liu, S.g Wang, and S. Zou, “Differentialpressure-based fiber-optic temperature sensor using Fabry–Perot interferometry,” Opt. Lett., vol. 40, no. 6, pp. 1049-1052, Mar. 2015.
23 R. Gao, Y. Jiang, and W. Ding, “Agarose gel filled temperatureinsensitive photonic crystal fibers humidity sensor based on the tunable coupling ratio,” Sens. Actuators B, vol. 195, pp. 313–319, Jan 2014.
24 G. Berruti, M. Consales, A. Borriello, M. Giordano, S. Buontempo, A. Makovec, G. Breglio, P. Petagna, and A. Cusano, “A Comparative Study of Radiation-Tolerant Fiber Optic Sensors for Relative Humidity Monitoring in High-Radiation Environments at CERN,” IEEE Photonics J., vol. 6, no. 6, pp. 0601015, Dec. 2014.
25 “Analysis of the sensor of temperature and humidity measurement based on the optical fiber” News of the national academy of sciences of the republic of Kazakhstan series of geology and technical sciences ISSN 2224-5278 https://doi.org/10.32014/2018.2518-170X.19 Volume 5, Number 431 (2018), 133 – 140.

Комментарии закрыты.