KUBEPHETHUKA

MPHTY 28.29.53
A.S.Kussainov', A.K.Beisekov', G.B.Turmaganbet’
'al-Farabi Kazakh National University, AlImaty, Kazakhstan

DEPLOYMENT AND TESTING OF THE PARALLEL
ENVIRONMENT FOR THE QUANTUM VARIATIONAL
MONTE CARLO METHOD

Abstract. It is formulated a brief introduction for the beginner programmer
scientists in the parallel and multi-threaded programming. The example of fast
installation of minimal set of tools for the parallel programming, the creation of
own multi-threaded program, its compilation, debugging and starting was given.
Open MPI software package provides the realization of programming interface
of MPI for the exchange of messages between processes, also it is considered
as the example and the tool of parallel programming for the increase of
performance of multi-core and distributed computing systems. It is presented
the example of program, which is realizing variational method of Monte Carlo
for the salvation of Schrodinger equation in case of quantum harmonic oscillator,
written for the multi-core and distributed computing systems. It is given the
explanation with the comments of transition from written single-threaded
sequential program to C++ parallel program.

Key words: Parallel programming, OpenMPI, variational method of Monte Carlo,
Schrodinger equation, harmonic oscillator

V/4

AHHoTauusA. CcopmMynnpoBaHo kpaTkoe BBeAeHWE AN HauMHaloWero yyYeHo-
ro-nporpaMmucTa B napansnenbHoe U MHOronoTOYHOE MporpamMmMUpoOBaHUeE.
MpuBeaeH npumep GbICTPON YCTAHOBKM MWHUMAarbHOro Habopa cpeAcTB Ans
napansnensHoro NPorpaMMnpoBaHusi, HanvcaHus cobCTBEHHOW MHOroOMoTou-
HOW Mporpammbl, €e KOMMIUIAUuUKW, oTnagku u 3anycka. MNporpaMMHbIA nakeT
OpenMPI, npeacraBnsiolwnii cobon peanusauuio NporpamMmmMmHOro MHTepderica
MPI gna obmeHa coobweHusMu mexay npoLeccamu, pacCMOTPEH Kak npwu-
MEp W WHCTPYMEHT napasnfenbHOro nporpaMmMUpOBaHUs ¢ LENblo YBENUYEHUS
NPoOuU3BOAUTENBHOCTU MHOFOSIAEPHbLIX U pacnpeieNéHHbIX BbIYUCITUTENbHbIX
cucTtem. lNMpeacTaBneH npumep NporpaMmel, peanuayowen BapuaLuoHHbI
meTtop MoHTe-Kapno ans pewenusa ypaeHeHus LpeguHrepa B criyvae KBaHTO-
BOr0 rapMOHWYECKOro OCLMNIATOpA, HaMWCaHHOW Afsl MHOrosiAEpHbIX W pac-

23

KubepHemuka. HaykoeedeHue

npefenéHHbIX BblMUCTUMTENBHBIX cUCTEM. [JaHo OnUcaHue ¢ KOMMEHTapusaMu
nepexoa OT HanucaHHOW OOHOMOTOYHONM nocregoBaTeNlbHOW MporpaMmbl Ha
C++ K napannencHon nporpamme.

Knio4yeBble cnoBa: napannensHoe nporpammuposaHue, OpenMPI, Bapuauu-
OHHbIN MeTod, MeTof MoHTe-Kaprno, ypaBHeHue LpeauHrepa, rapmMoHUYecKkun
ocuUnAATOP.

7

Tyningeme. bacTtaylbl fbINbIMU-NPOrPaAMMUCTTIH, Napannesnb XoHe KenafbliH-
bl Mporpammarnayfa apHarnfaH Kbickawa kipicneci kansintacTtbeipbinfFaH. MNa-
pannens nporpammanayfa apHanfaH MUHUMangbl K ypangap KUbIHTbIFbIH Xbifl-
Jam KoHAbIpy, ©3iHAIK kenafbiHAbl NporpaMmmanapiblH Kasblfybl, OHbIH KOM-
nunnauuanapsl, petTke KenTipy MeH icke kocy Mbicangapbl kenTipinreH. Npo-
ueccrep apacbiHgarbl xabap anmacTbipywbl MPI nporpammansik nHTepdernciHiH,
XKy3ere acyblH kepceTywi OpenMP| nporpammanblk nakeTi kenaaponbl XaHe
KeH TapanfaH ecenTey XynenepiHiy, eHiMAiNiriH apTTbipy YWIiH napannens npo-
rpamMmmanayablH Mbicanbl MeH Kyparnbl peTiHge kapacTbipbiniFaH. Kenagponsi
KeHe KeH TaparfaH ecentey XynenepiHe XasblifaH KBaHTTbIK rapMOHUKanbIK,
ocuunnaTop kesiHgeri WpeavHrep TendeyiH Wellyre apHanfaH BapusiLUANbIK,
MoHTe-Kapro agiciH icke acbipylbl NporpamMmma Mblcanbl kenTipinreH. Mapan-
nenb nporpammara C++-Te GipafblHAbI PeTTi Xa3sblNFaH nporpaMmara cunaTt-
TaMa MeH TyciHgipmenep GepinreH.

TyniHai ceapep: napannens nporpammanay, OpenMPI, Bapuaumansik MoHTe-
Kapno agici, lpeauHrep TeHaeyi, rapmMoHuKanbiK ocLUnNnaTop.

Introduction

High performance personal desktops or workstations, as well
as clusters and high performance computing systems which could
be accessed remotely, became widely available nowadays. Many of
these are state-of-the-art, expensive machines maintained by the
numerous staff and capable to address the fundamental pure and
applied science problems of our days [1-2]. In case of the later ones,
the researcher could directly proceed to the coding of the parallel
program, delegating the tedious task of network and parallel
environment configuration to a network administrator. This type of IT
professionals, though possessing the vast knowledge and experience
in networking protocols, most likely will make you to work with the
closed box solution, even though the creation and configuration of
your own computational cluster is relatively easy task for today's
scientist.

24

Hosocmu Hayku Kaszaxcmana. Ne 2 (128). 2016

To fill this gap in the professional IT training the multiple studies
and help resources have been printed and circulated among the
interested scientists and researches [3, 4]. Research universities
around the world including Kazakhstan are in possession or include
in their strategic development plans supercomputers and HPC (high-
performance computing) systems [5].

There is another important moment to address. Many beginner
programmers though have in their possession the state-of-the-art
multicore computing system are able to utilize only a small portion of
its computational power. All modern computers have the multicore
central processing units (CPUs). Unless you have a sophisticated
compiler which could parse your, let us say C++, code to run
simultaneously on all the cores, regularly you will have only one of
eight cores, for octet CPU, to handle your task. You need to
multithread your application by yourself because each thread of
execution can only saturate one core [6].

These two moments are addressed at once by using the
OpenMPI library [7] which can handle multithread coding and feed it
to a multicore CPU or distribute the tasks across the network of
computers connected into a computational cluster. Unlike the similar,
OpenMP, development of the message parsing protocols [8] it is
mainly and extensively documented in electronic resources and much
easier to deploy for the beginner.

Additionally, one could make himself comfortable with parallel
programing before attempting to learn and configure the complex
networks and investing in buying equipment or machine time on high-
performance computing systems.

We have selected variational Monte Carlo method for the
Schrodinger equation [9] of the quantum harmonic oscillator to
implement numerically as an excellent example of multithreading and
performance optimization in scientific computing [10].

Methods

In our work the Debian distribution of the Linux class operational
systems was made an operational system of choice mainly because
of its flexibility, freeware nature, and more than modest requirements
for an existing hardware. You will have multiple versions available for
download free of charge at [11]. To successfully run a fully functional

25

KubepHemuka. HaykoesedeHue

version with graphical desktop, parallel computation library, ssh client/
server etc we need the modest 256 megabytes of RAM and several
gigabytes of hard disk space. The Windows OS users may install an
Oracle virtualbox software [12] and populate it with any Linux
installation of their choice or install a second OS with ability to select
it at the boot time.

One should take caution to install software and OS of the same
register size, that is 32-bit or 64-bit (amd64 or i386 packages), across
your complex computational system and virtual environment.

Please be aware, that if your computer is old enough you may
came across the problem of it not supporting 64-bit software and
virtualization technology. From now on, we assume that your
computer's CPU has more than one core.

Using OpenMPI is the easiest and quickest way to learn parallel
programming and maximize the performance of your desktop system.
This package is always included in full installation DVDs, CDs or online
depositories and may be installed by the following command:

$ apt-get install openmpi-bin openmpi-common
libopenmpi 1.6 libopenmpi-dev

(1)

Depending on the state of your system, some of these
components may already be installed or unavailable and you will be
offered with an alternative.

For a numerical problem to calculate we chose the variational
Monte Carlo method to solve the Schrodinger equation for the
harmonic oscillator. We start with the following, one dimensional, time
independent Schrodinger equation

h? d?p(x)
2m dx?

where k is the force constant. If we know the complete set of N
eigenfunctions in the following form
N-1

) =) i) (3)

=0

+%mk2x2<p(x) = Ep(x) (2)

26

Hosocmu Hayku Kasaxcmana. Ne 2 (128). 2016

the average value of energy <E> will be given by the these expressions

[27 dx@) HOR) el (E - o)
E = o =
v v B LA v SFTE (4)

here H is the Hamiltonian given by the left part of equation (2) and E,
is the ground state energy. Variational Monte Carlo method uses
equation (4) as a starting point. Replacing the unknown set @(x) of
eigenfunctions by the trial wavefunction @, (x) we are then varying
he parameter a, see equation (5). If we are lucky, the calculated
average energy at the local minimum will give as a ground state value
and corresponding characteristic wave function.

42
(EY = [+ dxw(x)E, (x). where w(x) = —gora®l
e f_w dx'|®p o (x")| (5)

H®pq(x)

and £ (x) = or ()

One of the main features of this method is that we do not sample
the whole configuration space from minus to plus infinity
indiscriminately rather than traversing it in the manner described as
Metropolis-Hastings algorithm. Target wave function's tails go to zero
pretty fast even not far away from the origin and its overall shape is
similar to the normal distribution. The Metropolis-Hastings algorithm
[13], which samples the space according to the weight function w(x)
in equation (5), is a Markov chain Monte Carlo (MCMC) algorithm.

We place n of the so called walkers randomly and uniformly
across the selected region at coordinates (x), (index t stands for the
current state of walkers' coordinates). The next set of coordinates
(x.).., of walkers, who are sampling the integral in equation (4)
independently, is determined by the following set of rules:

Xew1 =X + &,
cew(Xpgq)

if w(zy) > 1 the step 1s accepted . 6)

[w(xpsq)

) < T accept it onlv 1f 1t’s larger than random number on (0.1)
wlxy : =

27

KubepHemuka. HaykoeedeHue

where §is the size of step which is determined based on the problem's
conditions. If this step is accepted the local energy E, (x) calculated at
this walker's coordinate contributes to the integral in equation (5).

If the trial function chosen to be ®T (x) =exp(-ax’), the value of
<E> is than calculated according to the formula

1

counts
where counts are the number of accepted steps across all walkers'
trajectories.

Here we used expression for E, derived from equation (5). We
also assume that in Hamiltonian, see equation (2), we choose the
values of h=m=k=1. It is very neat numerical problem to implement in
a single thread and in parallel.

Results and Discussions

The problem itself is pretty straightforward to formulate using
C++ programming language, see Table 1. We have structured the
code in such a way that if one decides to comment out the code lines
printed in boldface font he will end up with the regular single thread
program. The parallel version is compiled and run in 8 threads through
the following set of commands

(E) =

it Y (x,), where E, (x): a+ xz(O.S -2a?] (7)

$ mpicxx \-o Jan06_vmc_paral Jan06_vmc_paral.cpp
$ mpirun -np 8 Jan06_vmc_paral

(8)

while the single thread version is compiled and run in a more
conventional fashion

$ g++ -0 arman_vmc arman_vmc.cpp
$./arman_vmc

(9)

If you are running a parallel program on a cluster of individual
machines the second line in equation (8) is replaced with

$ mpirun --hostfile my_hostfile -np 8 Jan06_vmc_paral (10)

where the text file my_hostfile specifies the configuration of your
network and the number of cores per individual CPU.

28

Table 1

C++ code used to calculate the range of ground state energy values as a function of parameter a. In bold

font are given the pieces of code which convert a single thread program to a multithread

O 00 1O W=

#include <mpi.h> //header file to provide parallel programing environment
#include <cstdlib>

#include <iostream>

#include <cmath>

using namespace std;

double a.e.sum_e.*x;

int ¢_ounter;
int recv_data[2]={2400, 20000}, *send_data; //walkers’ number and Monte Carlo steps values
double senback_data[2], *collect_data; /I arrays to collect energy and accepted steps data from individual parallel process

10 int id, ntasks, len;
21 double w(double xt, double x) {

22 retumn exp(-2*a*(xt*xt - x*x));} /the ratio of the weight function computed for consecutive x values
23 double e_nergy(double x) {

24 return atx*x*(0.5-2%a*a),} // local energy function

25 void Assign Positions(){ //function to initialize starting point for all walkers

26 srand(time(NULL)*id+1),
27 x =new double [recv_data[0]];
28 for (inti=0; i <recv_data[0]; i++){

29 x[1] = rand)(RAND _MAX + 1.0)-0.5;}} /fwalkers uniformly distributed within (-0.5:+0.5) range

30 void Stir_ All Walkers(){ //function to move all walkers according to Metropolis algorithm
31 for(int j=0;j < recv_data[0]; j++){

32 double xt=x[j]+pow(-2.0*log(rand(/(RAND_MAX+1.0)),0.5)* // Box-Muller transform to generate normal distribution
33 c08(2.0*3.141592*rand()/(RAND_MAX+1.0)),

34 iftw(xt, x[])>1){

35 x[j] = xt;++c_ounter;e = e_nergy(x[j]);sum_e += e}

36 else{

37 if (wixtx[j])>rand()/(RAND_MAX+1.0)){

38 x[j] = xt;++c_ounter; e= e _nergy(x[j]);sum e +=e;}}

39 35

40 int main(int arge, char *argv[]){

MPIL_Init(&argce, &argyv);

MPIL_Comm_size(MPIL_COMM_WORLD, &ntasks);
MPIL_Comm_rank(MPL_COMM_WORLD, &id);
if(id=0){ //subroutine to evenly distribute walkers between the claimed number of processes
int WperTask = floor(recv_data[0]/ntasks);
send_data = new int [2*ntasks];
for (int i = 0; i < ntasks; i++)
{send_data[2*i]=WperTask;
if(i<=recv_data[0]%ntasks-1){send_data[2*i]++;}
send_data[2*i+1]=recv_data[1];}
collect_data = new double [2*ntasks];}
MPIL_Scatter(send_data,2, MPI_INT, //sending assigned number of walkers and individual number of step
recv_data,2, MPI_INT,0MPI_COMM_WORLD); /to each process
Assign_Positions(),
for(a=0.1;a<=1.5;a+=0.05){
for(int k=0:k<=floor(0.2*recv_data[1]);k++){Stir All Walkers();}
double avg_e=sum_e=0.c_ounter=0;
for(int k=0:k<=recv_data[1]:k++){
Stir All Walkers(). }
avg_e = sum_e/c_ounter,
senback_data[0]=sum_e;senback_data[l]=c_ounter; //collecting data back from all processes
MPI_Gather(senback_data,2, MPI_DOUBLE, /fand calculating alpha and average energy values
collect_data,2, MPI DOUBLE,0,MPI_COMM_WORLD);
if(id=0){double total_e=0;double total_count=0;
for(int i=0;i<ntasks;i++){
total_e+=collect_data[2*i];
total_count+=collect_data[2*i+1];}
cout<<a<<"\t"<<total_e/total_count<<"\n";}
¢_ounter=0;}
MPIL_Finalize();
exit(0): }

Hosocmu Hayku Kaszaxcmana. Ne 2 (128). 2016

The configuration of our computer is listed as follows: Intel Core
i7 4790K, 4.0GHz/LGA-1150/22nm/Haswell/8Mb L3 Cache/
IntelHD4600/EM64T, DDR-3 DIMM 16Gb/1866MHz PC14900 Kingston
HyperX Fury Black, 2x8Gb Kit, CL10.

The main features of our code are the following: we split, see
the lines 41-53, the total number of walkers uniformly between the
claimed number of threads, which is eight, see equation (8); then we
used the Box-Muller transform [14] to generate the pairs of
independent, standard, normally distributed with zero expectation and
unit variance random numbers, given a source of uniformly distributed
random numbers from standard C++ rand() generator, see the lines
32-33; the MPI_Scatter and MPI_Gather were the MPI functions to
facilitated our data exchange between the threads, see the lines 52
and 62. We have not made an additional effort to optimize the step's
size or the standard random generator's quality.

The data obtained from our simulations are plotted on Figure 1.
The left part represents the plot of the average energy versus
parameter a. As expected, we can clearly see the minimum at a=0.5
where the local energy function has no dependence on a. This value
of a corresponds to the zero variance value on the right plot which
pinpoints the ground state in our problem.

3 T T T T Y T T 3
25 25
2) 2
5 g
w M
v &
>‘,1.5 <15
g’ v
w1 3 1
2
w
05 0.5
o.l1 1- 0
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
Parameter a Parameter a

Figure 1. Numerical simulation data for the quantum harmonic oscillator. The
average energy value <E> on the left and the quantity <E?>—<E>? on the right are
both plotted as the functions of parameter a

29

KubepHemuka. HaykoeedeHue

Table 2

Performance comparison between the parallel and single threaded
implementations of the variational Monte Carlo algorithm

Wall time CPU time
Parallel algorithm timing (averaged 54.8723 53.709
between 8 threads). Process name is
Jan06_vmc_paral
Single threaded one. Process name is 275.519 275.361

arman_vmec

For the reader's info, CPU time is the time which is actually spent
by CPU to work on the process, while the Wall time additionally includes
the time spent by the process in the line awaiting to be handled plus
some other delays. How the work load is now uniformly spread across
the processes is clearly seen from the Figures 2 and 3. The single
instance of arman_vmc process is managed singlehandedly by one
core #2, see Figure 2. While in case of the parallel program all eight
cores of our CPU are loaded with their own fraction of work, running
8 instances of the Jan06_vmc_parall simultaneously each with their
own parameter, see Figure 3.

Conclusions

As we can see, the relatively straightforward modification of our
system allows us to run multiple parallel algorithms and increase
productivity of our code in many times. The coding and experience
gain in such an exercise is a good start in transition to the distributed
and high performance computations. Implemented variational Monte
Carlo method is a key tool for many computationally extensive and
effective numerical methods in science.

Acknowledgments

This research was supported by grant Ne3824/T®4 provided by
the Science Committee at the Ministry of Science and Education of
Republic of Kazakhstan to the principal investigator at the National
Nanotechnology Laboratory of Open Type, Physics and Technology
Department, al-Farabi Kazakh National University.

30

Hosocmu Hayku Kasaxcmawna. Ne 2 (128). 2016

mpiuser@debian-wind: ~/0-qmcpack-docs i
File Edit View Search Terminal Tabs Help
mpiuser@debian-wind: ~... X mpiuser@debian-wind: ~... X mpiuser@debian-wind: ~... + -
top - 21:35:10 up 1:29, 1 user, 1load average: 2.73, 1.58, 0.77

Tasks: 239 total, 2 running, 237 sleeping, 0 stopped, 0 zombie

%Cpu®@ : 0,7 us, 0.0 sy, 0.0 ni, 99.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpul : 0.7 us, 2.0 sy, 0.0 ni, 96.4 id, 1.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 : 2,0 us, 0.3 sy, 0.0 ni, 97.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpud : 1.0 us, 2.6 sy, 0.0 ni, 95.4 id, 1.0 wa, 0.0 hi, 0.0 si, 0.0 st
%CpusS 0.7 us, 0.7 sy, 0.0 ni, 98.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu6 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu7 : 2.0 us, 0.0 sy, 0.0 ni, 98.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 32826396 total, 29933820 free, 1058628 used, 1833948 buff/cache
KiB Swap: 18997244 total, 18997244 free, 0 used. 31295364 avail Mem

PI ER PR i HR F TIME+ MMAN
3404 mpiuser 20 0 13060 3276 3076 R 100.0

0 0.0 0:86.70 arman_vmc
1542 mpiuser 20 0 2066860 3319060 78112 S 3.7 1.6 3:07.28 gnome-shell
1354 mpiuser 20 0O 467756 53008 35792 S 3.0 0.2 2:30.16 Xorg

Figure 2. Output of the top command displaying info about the state of the
individual cores of our CPU for a single thread C++ program of variational
Monte Carlo simulation

piuser@debian-wind: ~/0-gmcpack-docs x
File Edit View Search Terminal Tabs Help

mpiuser@debian-wind: ~... X mpiuser@debian-wind: ~... X mpiuser@debian-wind: ~... + -

top - 21:34:13 up 1:29, 1 user, 1load average: 3.91, 1.38, 0.66
Tasks: 245 total, 9 running, 236 sleeping, 0 stopped, 0 zombie

%Cpu® : 99.7 us, 0.3 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpul : 99,7 us, 0.3 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpud : 99.7 us, 0.3 sy, 0.06ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%CpuS5 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpub : 99.7 us, 0.3 sy, 0.0ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu7 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 32826396 total, 29914276 free, 1074020 used, 1838100 buff/cache

KiB Swap: 18997244 total, 18997244 free, 0 used. 31280388 avail Mem

VIRT RES SHR
23134 12628 10196

100.0

3355 mpiuser 20 0 0.0 0:07.76 Jan06_vmc_paral
3361 mpiuser 20 0 231208 11812 9444 R 100.0 0.0 0:07.76 Jan06_vmc_paral
3358 mpiuser 20 0 231208 11692 9328 R 100.0 0.0 0:07.75 Jan06_vmc_paral
3359 mpiuser 20 0 231208 11836 9472 R 100.0 0.0 0:07.76 Jan06_vmc_paral
3362 mpiuser 20 0 231208 11796 9432 R 100.0 0.0 0:07.74 Jan06_vmc_paral
3356 mpiuser 20 0 231208 11716 9348 R 99.7 0.0 0:07.74 Jan06_vmc_paral
3360 mpiuser 20 0 231208 11792 9428 R 99.0 0.0 0:07.63 Jan06_vmc_paral
3357 mpiuser 20 0 231208 11792 9424 R 98.7 0.0 0:07.48 Jan06_vmc_paral

Figure 3. Output of the top command displaying info about the state of the
individual cores of our CPU for the multithreaded C++ program of variational
Monte Carlo simulation

31

KubepHemuka. HaykoeedeHue

References

1 Supercomputer Sites [web data base]. Top 500. — The list of
the 500 most powerful computer systems. [OnekTpoH. pecypcl:
2015. — http://www.top500.org/lists/2015/11/

2 Sadaf R., Alam et al. An Evaluation of the Oak Ridge National
Laboratory Cray XT3 // International Journal of High Performance
Computing Applications. — 2008. — V.22. — Ne 1. — P. 52-80.

3 Gergel' V.P. Vysokoproizvoditel'nye vychisleniya dl mnogoya-
dernyh mnogoprocessornyh sistem. Uchebnoe posobie //Nizhnij
Novgorod: [zd-vo NNGU im.N.I.Lobachevskogo, 2010. — 421 s.

4 Scott L.R., Clark T. and Bagheri B. Scientific Parallel Com-
puting. Princeton, NJ, USA // Princeton University Press, 2005. —
392 p.

5 Abdrahmanov R. Superkomp'yuter ot partnyora: superkomp'yuter
stoimost'yu 10 min. dollarov SSHA poluchit KazNU im. al'-Farabi po
grantu pravitel'stva KNR // Vechernij Almaty. — 2015. — 12 sentya-
brya.

6 Akhter S., Roberts J. Multi-core Programming: Increasing Per-
formance Through Software Multi-threading. Intel Press, 2006. —
336 p.

7 OpenMPI project [web data base]. — Information and resourc-
es. [3nekTpoH. pecypc]: — http://www.open-mpi.org/

8 Chapman B. Using OpenMP: Portable Shared Memory Paral-
lel Programming (Scientific and Engineering Computation). — The MIT
Press: Scientific and Engineering Computation edition, 2007. — 384 p.

9 Kashurnikov V.A., Krasavina V. Vychislitel'nye metody v kvan-
tovoj fizike: Uchebnoe posobie. — M.: MIFI, 2005. — 412 s.

10 Voevodin V.V., Voevodin VI.V. Parallel'nye vychisleniya //
SPb.:BHV-Peterburg,2002. — 608 s.

11 Debian OS [web data base]. — Information and resources.
[GnekTpoH. pecypc]: — https:/iwww.debian.org/

12 Oracle software and applications [web data base]. — Free

32

http://www.top500.org/lists/2015/11/
http://www.open-mpi.org/
https://www.debian.org/

Hosocmu Hayku Kaszaxcmana. Ne 2 (128). 2016

access information and resources. [3nekTpoH. pecypc]: — https://
www.virtualbox.org/

13 Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H.,
Teller E. Equations of State Calculations by Fast Computing Machines //
Journal of Chemical Physics. — 1953. — Ne 21 (6). — P. 1087-1092.

14 Box G.E.P, Muller M.E. A Note on the Generation of Ran-
dom Normal Deviates // The Annals of Mathematical Statistics. —
1958. - Vol. 29. — Ne 2. — P. 610-611.

Kycaunoe Apman CauHoeud, kaHOUGam mexHUYeckux Hayk, PhD,
e-mail: arman.kussainov@gmail.com

Belicexoe AnmbiHbek Kydusapbekoeu4, MazucmparHm, e-mail:
arman.kussainov@gmail.com

Typmaran6em I'ynHyp Bypkimgbiabl, Mazucmpanm,
e-mail: turmaganbet.guinur@mail.ru

33

http://www.virtualbox.org/
mailto:arman.kussainov@gmail.com
mailto:arman.kussainov@gmail.com
mailto:turmaganbet.gulnur@mail.ru

