УДК 547.7/.8

**МРНТИ 31.21.27** 

## КАТАЛИТИЧЕСКАЯ ПЕРЕРАБОТКА МЕТАНА В ВОДОРОДСОДЕРЖАЩИЕ ТОПЛИВНЫЕ СМЕСИ

*К. Досумов,* д.х.н., проф., *Д. Б. Абдухалыков*, к.х.н.

Казахский национальный университет им. аль-Фараби Институт органического катализа и электрохимии им. Д. В. Сокольского

Представлены результаты исследования парциального окисления метана на 1,5 %  $\rm H_3PW_{12}O_{40}$ /AlSi катализаторах и образцах, модифицированных Pt и Ru, а также на 0,5- и 0,1 % Pt катализаторах, нанесенных на ZSM-5+Al $_2O_3$ . Установлено, что на 1,5 %  $\rm H_3PW_{12}O_{40}$ /AlSi катализаторе оптимальный выход этилена, равный 8,4 %, достигается при 1073 К. Для получения водорода с выходом 18,0 % и оксида углерода - 9,0 % оптимальная объемная скорость составляет 12000 ч $^1$ . На 0,5- и 0,1 % Pt катализаторах, нанесенных на ZSM-5+Al $_2O_3$ , максимальный выход водорода равен 46,2 и 48,0 % соответственно при 8000 ч $^1$ .

**Ключевые слова:** метан, парциальное окисление метана, каталитическая переработка метана, топливные смеси.

1,5 % ${\rm H_3PW_{12}O_{40}}/{\rm AlSi}$  және түрлендірілген Pt и Ru катализаторларында, сонымен қатар ZSM-5+Al $_2{\rm O_3}$  тасымалдағышқа отырғызылған 0,5- және 0,1 % Pt катализаторларда метанның парциалды тотығу реакцияларындағы зерттеу нәтижелері көрсетілген. 1,5 %  ${\rm H_3PW_{12}O_{40}}/{\rm AlSi}$  катализаторында реакцияның температурасы 1073К-де этиленің қолайлы шығымы 8,4%-ға дейін жететіні анықталды. Шығымы 18,0 % сутегі және 9,0 % - көміртегі оксидін алу үшін қолайлы көлемдік жылдамдығы 12000 сағ. 1 болып табылады. 0,5 және 0,1 % Pt катализаторлары ZSM-5+Al $_2{\rm O_3}$  тасымалдағышқа отырызылғанда, көлемдік жылдамдығы 8000 сағ. 5 болғанда ең жоғарғы сутек шығымы сәйкесінше 46,2 және 48,0 % көрсетті. Түйінді сөздер: метан, метанның парциалды тотығуы, метанды катализаторлық өңдеу, отындық қоспалар.

The results of studying the partial oxidation of methane on 1.5%  $H_1PW_{12}O_{40}/AlSi$  catalysts and samples modified by Pt and Ru, and also on 0.5- and 0.1% Pt supported on ZSM-5 +  $Al_2O_3$ . It was found that optimum yield of ethylene (8.4%) is achieved at 1073K on 1.5%  $H_1PW_{12}O_{40}/AlSi$  catalyst. To produce 18.0% hydrogen and 9.0% carbon monoxide is necessary the optimum space velocity equal to 12000h<sup>-1</sup>. Maximum yields of hydrogen equal to 46.2 and 48.0%, respectively, were received at 8000h<sup>-1</sup> on 0.5- and 0.1% Pt catalysts supported on ZSM-5 +  $Al_2O_3$ .

Key words: methane, partial oxidation of methane, catalytic processing of methane, fuel mixture.

На сегодняшний день рациональная утилизация природных и попутных нефтяных газов и прекращение их сжигания в факелах являются одной из острых и нерешенных экологических и экономических проблем. Особенно в условиях кризиса и ограниченности запасов нефти как природный, так и попутный нефтяной газ можно рассматривать как альтернативный источник получения ценных продуктов нефтехимии и органического синтеза [1]. По экспертным оценкам, в 2015 г. доля нефти на мировом энергетическом рынке сократится до 36-38 %. В то время как доля газа возросла до 24-26 %, гидро- и атомная энергетика занимает по 5-6 %.

При переработке природного газа - метана первой стадией практически всегда является получение синтез-газа, из которого в дальнейшем получают различные полезные химические продукты [2-11].

Большой практический интерес представляет добавление синтез-газа к ультрабедным топливно-воздушным смесям в камерах сгорания турбин, поскольку это позволяет стабилизировать процесс горения и добиться снижения уровня выбросов оксидов азота до 1-5ppm [12].

Целью работы является разработка оптимальных составов катализаторов на основе гетерополисоединений W 12-го ряда с центральным атомом фосфора нанесенного на кремнийсодержащий оксидный и синтетический алюмосиликат, а также промотированные платиной катализаторы для процесса окислительной конверсии метана в топливные смеси.

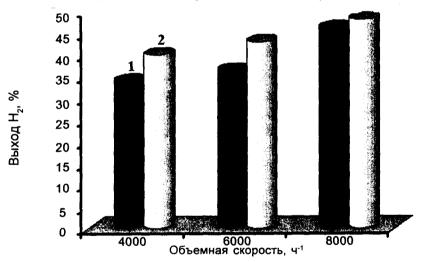
Процесс парциального окисления метана проводился на  $1.5 \% H_3 PW_{12}O_{40}/AISi$  катализаторе при варьировании объемных

скоростей от 8000 до 24000 ч $^{-1}$ , и соотношении исходных компонентов 4,0 % СН $_4$ : 2,0 % О $_2$ : 7,5 % N $_2$ : 86,5 % Ar, Р≈1 атм. (табл. 1).

Таблица 1

Влияние варьирования объемной скорости процесса на парциальное окисление метана на 1,5 % H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>/AISi катализаторе

| т, к | Концентрация продуктов реакции на выходе, % |                 |     |       |                 | Хсн4,         | SH <sub>2</sub> , | S <sub>∞</sub> , |     | Sc <sub>2</sub> H <sub>4</sub> , | H₂/CO |
|------|---------------------------------------------|-----------------|-----|-------|-----------------|---------------|-------------------|------------------|-----|----------------------------------|-------|
|      | Ссн₄                                        | Сн <sub>2</sub> | Cco | Сс₂н₅ | Cc₂H₄           | %             | %                 | %                | %   | %                                |       |
|      | · · · · · · · · · · · · · · · · · · ·       |                 |     | 0,    | 45 c –          | 8000          | i <sup>-1</sup>   |                  |     |                                  |       |
| 973  | 12,0                                        | 0,0             | 0,2 | 0,1   | 0,1             | 31,3          | 0,0               | 0,7              | 0,4 | 0,2                              | 0,0   |
| 1073 | 0,2                                         | 14,3            | 8,0 | 0,0   | 0,0             | 98,9          | 14,5              | 8,1              | 0,0 | 0,0                              | 1,8   |
| 1173 | 0,3                                         | 16,4            | 9,5 | 0,0   | 0,0             | 98,3          | 16,7              | 9,6              | 0,0 | 0,0                              | 1,7   |
|      |                                             |                 |     | 0     | ,3 c <b>~</b> 1 | 2000 <b>ч</b> | -1                |                  |     |                                  |       |
| 973  | 16,6                                        | 0,0             | 0,1 | 0,1   | 0,1             | 5,0           | 0,0               | 2,0              | 2,0 | 2,6                              | 0,0   |
| 1073 | 13,7                                        | 2,3             | 3,5 | 0,3   | 0,6             | 21,3          | 10,8              | 16,4             | 1,5 | 2,8                              | 0,7   |
| 1173 | 1,9                                         | 18,0            | 9,0 | 0,0   | 0,3             | 89,3          | 20,2              | 10,1             | 0,0 | 0,4                              | 2,0   |
|      |                                             |                 |     | 0,    | 15 c – :        | 24000 ч       | Ç <sup>1</sup>    |                  |     |                                  |       |
| 973  | 14,8                                        | 0,0             | 0,1 | 0,1   | 0,9             | 14,9          | 0,0               | 0,4              | 0,6 | 6,0                              | 0,0   |
| 1073 | 11,6                                        | 2,3             | 0,9 | 0,2   | 0,1             | 33,3          | 7,0               | 2,7              | 0,5 | 0,3                              | 2,6   |
| 1173 | 1,9                                         | 17,0            | 8,0 | 0,0   | 0,4             | 89,0          | 19,1              | 9,0              | 0,0 | 0,4                              | 2,1   |


Примечание. Условия опыта: 4,0 %  $\mathrm{CH_4}$ : 2,0 %  $\mathrm{O_2}$ : 7,5 %  $\mathrm{N_2}$ : 86,5 % Ar, P = 1 атм.

Как видно, оптимальная объемная скорость — 12000 ч $^{-1}$  (время контакта 0,3 с), где на 1,5 %  $\rm H_3PW_{12}O_{40}$ /AlSi катализаторе основными образующимися продуктами являются водородсодержащие топливные смеси с выходом водорода 18,0 % и оксида углерода - 9,0 %. Экспериментально выявлено влияние температуры реакции в интервале 573-1073К на выход продуктов окислительной конверсии метана на 1,5 %  $\rm H_3PW_{12}O_{40}$ /AlSi при

W — 8000 ч<sup>-1</sup>, CH<sub>4</sub>: O<sub>2</sub> = =75,0:25,0 об. %. На данном катализаторе показано, что при температурах 573-673 К образование продуктов окисления не наблюдается. Начиная с 773 К образуются в незначительных количествах C<sub>2</sub>H<sub>4</sub> — 0,5 %, C<sub>2</sub>H<sub>6</sub> — 2,1 %, CO — 0,7 % и CO<sub>2</sub> — 0,7 %.

 $\tilde{C}$  повышением температуры реакции от 773 до 1073 К выход продуктов растет и составляет в пределах, %: CO - 0,7 - 8,1; CO<sub>2</sub> - 0,7 - 13,6; C<sub>3</sub>H<sub>8</sub> - 0,1 - 0,2; C<sub>3</sub>H<sub>6</sub> - 0,1 - 0,2. Максимум по выходу этилена достигается при 1073 К — 8,4 %. Конверсия исходной смеси составляет 0,7-25,3 %.

Испытания, проведенные на однокомпонентных (Мо, Fe, Zn, Mg), а также двухкомпонентных (Мо-Zn, Mo-Mg, Mo-Fe, Mo-Co) оксидных катализаторах, нанесенных на различные носители (цеолиты, природные глины), показали, что двухкомпонентные системы являются более активными. Выход водорода составлял 30-64 %, а среди ароматических углеводородов кроме бензола были определены толуол, о-ксилол, стирол, этилбензол.



Влияние изменения объемной скорости на выход водорода на 0,1 и 0,5 % Pt/ZSM-5 +Al $_2$ O $_3$ , катализаторах: 1 - 0,1 % Pt/ZSM-5 +Al $_2$ O $_3$ , 2 - 0,5 % Pt/ZSM-5 +Al $_2$ O $_3$ 

Их суммарное содержание составило 24-30 %. Оптимальной температурой образования ароматических и водородсодержаших смесей является 700-750 °C.

Проведены также испытания на 0,5 и 0,1 % Pt катализаторах, нанесенных в качестве модифицирующей добавки на ZSM-5+Al $_2$ O $_3$  при найденной опытным путем оптимальной температуре 750 °C с варьированием объемной скорости 4000-8000 ч $^{-1}$  (рисунок).

Как видно, при испытании 0,5 и 0,1 % Pt катализаторов, нанесенных в качестве модифицирующей добавки на  $ZSM-5+Al_2O_3$  при оптимальной температуре 750 °C с варьированием объемной скорости 4000-8000 ч<sup>-1</sup> выход водорода увеличивается с повышением объемной скорости на двух составах катализатора. Установлена оптимальная объемная скорость реакции 8000 ч<sup>-1</sup> с максимальным выходом водорода, равным 46,2 и 48,0 % соответственно, на 0,1 и 0,5 % Pt/ZSM-5 +Al\_O\_ катализаторах.

С целью увеличения эффективности катализатора в синтезе целевых продуктов в структуру гетерополикислоты были введены соли Pt и Ru в количестве 0,1 %. В оптимальных условиях изучена активность 0,08 % Pt + 0,02 % Ru + 1,5 %  $H_3PW_{12}O_{40}$ /AlSi катализатора при исходной реакционной смеси состава: 17,4 %  $CH_4$ : 17,4 %  $O_2$ : 65,3 %  $N_2$ , время контакта 0,3 с (табл. 2).

Следует отметить, что введение благородных металлов в структуру гетерополикислоты положительно отразилось на выходе продуктов при 1073 К, выход водорода составил 11,0 % при селективности 52,4 %. Выход СО – 4,7 % при селективности 22,4 %, что выше по сравнению с данными на 1,5 %  $\rm H_3PW_{12}O_4/$  AlSi катализаторе без добавления благородных металлов в качестве промотирующих добавок. Однако при оптимальной температуре реакции 1173 К выходы продуктов ниже на 3-4 %. Конверсия исходного метана составила 8,4-80,9 %.

Таким образом, установлено, что на всех исследованных составах катализатора наилучшими температурами парциального окисления метана в водородсодержащие смеси является область температур 700–750 °C, объемная скорость 8000-12000 ч<sup>-1</sup>. В указанных оптимальных условиях проведения реакций в основном образуются водород и оксид углерода с высокой

Таблица 2
Влияние температуры на выход продуктов реакции при окислении метана на катализаторах с введением и без благородных металлов

| т, к                                                       | Концентрация продуктов реакции на выходе, %                                      |                 |                 |       |       | Хсн4, | Sн <sub>2</sub> , | S <sub>co</sub> , | Sc₂н <sub>6</sub> , | Sc <sub>2</sub> н <sub>4</sub> , | H <sub>2</sub> /CO |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|-----------------|-------|-------|-------|-------------------|-------------------|---------------------|----------------------------------|--------------------|--|
|                                                            | Ссн4                                                                             | Сн <sub>2</sub> | C <sub>co</sub> | Сс2н6 | Сс2н4 | %     | %                 | %                 | %                   | %                                | 112/00             |  |
| -                                                          | 0,08% Pt + 0,02% Ru + 1,5% H <sub>3</sub> PW <sub>12</sub> O <sub>40</sub> /AlSi |                 |                 |       |       |       |                   |                   |                     |                                  |                    |  |
| 973                                                        | 15,9                                                                             | 0               | 0,8             | 0     | 0     | 8,4   | 0,0               | 9,5               | 0                   | 0                                | 0                  |  |
| 1073                                                       | 13,8                                                                             | 11,0            | 4,7             | 0,1   | 0,1   | 21,0  | 52,4              | 22,4              | 0,5                 | 0,6                              | 2,3                |  |
| 1173                                                       | 3,3                                                                              | 13,6            | 7,5             | 0     | 0,4   | 80,9  | 16,8              | 9,3               | 0                   | 0,5                              | 1,8                |  |
| 1,5% H <sub>3</sub> PW <sub>12</sub> O <sub>40</sub> /AlSi |                                                                                  |                 |                 |       |       |       |                   |                   |                     |                                  |                    |  |
| 973                                                        | 16,6                                                                             | 0,0             | 0,1             | 0,1   | 0,1   | 4,7   | 0,0               | 2,1               | 2,1                 | 2,8                              | 0,0                |  |
| 1073                                                       | 13,7                                                                             | 2,3             | 3,5             | 0,3   | 0,6   | 21,0  | 10,9              | 16,6              | 1,6                 | 2,8                              | 0,7                |  |
| 1173                                                       | 1,9                                                                              | 18,0            | 9,0             | 0,0   | 0,3   | 89,3  | 20,2              | 10,1              | 0,0                 | 0,4                              | 2,0                |  |

Примечание. Условия опыта:  $\tau$  = 0,3 с, исходная реакционная смесь: 17,4 % CH<sub>4</sub>: 17,4 % O<sub>2</sub>: 65,3% N<sub>2</sub>

селективностью процесса и низкими выходами других продуктов, что указывает на высокую эффективность применения разработанных нами составов катализаторов.

## Литература

- 1. Исмагилов З. Р. Разработка эффективных и наноструктурированных катализаторов конверсии природных и нефтяных попутных газов в ценные химические продукты // Актуальные проблемы нефтехимии: Матер. III Рос. конф. - Звенигород, 2009. -C.132-133.
- 2. *Крылов О. В.* Гетерогенный катализ. М.: ИКЦ «Академ-книга», 2004. 679 с.

- 3. *Арутнонов В. С. Крылов О. В.* Окислительные превращения метана. М.: Наука, 1998. 361 с.
- 4. Pantu P., Gavalas G.R. Methane partial oxidation on Pt/CeO<sub>2</sub> and Pt/Al<sub>2</sub>O<sub>3</sub> catalysts // Appl. Catal. A: Gen., 2002. Vol. 223, № 1. P. 253-260.
- 5. Aghalayam P., Park Y. K., Fernandes N., Papavassiliou V., Mhadeshwar A. B., Vlachos D. G. A C1 mechanism for methane oxidation on platinum // Journal of Catalysis. 2003. Vol. 213, № 2. P. 23-38.
- 6. *Крылов О. В.* Углекислотная конверсия метана в синтезгаз // Российский химический журнал. 2000. Т. 44, № 1. С. 19-33.
- 7. Brandao S. T., Simplicio L.M.T., Silva Jr.R.B. Partial oxidation of Methane over Ni, Pd and Pt catalysts Mechanism Investigation // 21th North American Catalysis Society Meeting. San Francisco, 2009. 2071 p.
- 8. Соловьев С. А., Губарени Е. В., Курилец Я. П. Роль оксидов редкоземельных элементов в катализаторах окислительной конверсии метана на основе NiAl₂O₃ // Теоретическая и экспериментальная химия. 2008. Т. 44, № 6. С. 359-364.
- 9. *Калачева Л. П., Федорова А. Ф.* Новые подходы к химической переработке природного газа // Химия нефти и газа: Матер. VII Междунар. конф. Томск, 2009. С. 545-548.
- 10. Аркатова Л. А., Курина Л. Н., Галактионова Л. В. Влияние модифицирующих добавок на каталитические свойства интерметаллида Ni<sub>3</sub>Al в процессе углекислотной конверсии метана // Журн. физ. химии. 2009. Т.83, № 4. С. 726-732.
- 11. *Розовский А. Я.* Экологически чистые моторные топлива на базе природного газа // Химия в интересах устойчивого развития. 2005. Т.13, № 1. С. 701-712.
- 12. Lyubovsky M., Smith L.L., Castaldi M., Karim H., Nentwick B., Etemad Sh., LaPierre R., Pfefferle W.C. Catalytic combustion over platinum group catalysts: fuel-lean versus fuel-rich operation // Catalysis Today. 2003. Vol. 83, № 6. P. 71-84.