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DERIVATION AND ANALYSIS OF THE DYNAMIC EQUATIONS OF
MOBILE ROBOTS WITH RANDOM DISTURBING FORCES BASED ON
THE PRINCIPLE OF LEAST GAUSS FORCE
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Abstract. Inthis paper, the derivation of the equations of dynamics of a four-wheeled mobile robot is carried
out using the variational principle of least constraint, known as the Gauss principle. Equations of nonholo-
nomic constraints are obtained. The function of the measure of coercion of the four-wheeled mobile robot is
composed. Dynamic equations based on the Gauss principle are obtained taking into account the dynamic
characteristics of two DC motors. Methods for taking into account the friction forces on the wheels and random
perturbations due to the unevenness of the canvas are proposed. On the Maple platform, an algorithm and a
program for modeling the dynamics of a mobile robot based on the Gauss principle were developed the cor-
rectness of the obtained equations of robot motion were proved.
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Introduction. The subject of the proposed
study is a four-wheeled cargo mobile transport
robot (CMTR). Such robots are used in the ma-
chine-building complex for flexible automated
production tasks[1], warehouse terminals, and
are gaining an increasing sector in the mining in-
dustry [2].

The research begins with modeling the dy-
namics of mobile robot (MR). A lot of works are
devoted to solving this problem[1]. Algorithms
for implementing dynamic calculations can be
built using traditional Lagrange-Euler or New-
ton-Euler methods [3]. In many works, other
forms of robot motion equations are used. These
include the Wicker equations [4], or the recurrent
Hollerbach equations [5], obtained using the La-
grange-Euler method; the Lu equations [6] based
on the Newton-Euler method; the Lee equations
[7] using the generalized Dalembert equations.
All these equations are different in form, since
they are obtained for different purposes [1,3].
Some of them provide the minimum time for
calculating control moments and reactions in the
joints of the manipulator, others are used in the

synthesis and analysis of control laws, the third
is used to simulate manipulator movements [8].
In the dynamics of wheeled MR, the main
issue of modeling is the interaction of the wheel
with the surface (relief), which is character-
ized as a non-holonomic bond [9] or the fric-
tion force based on the Coulomb-Amonton law
[10,11,12], with liquid friction according to the
Newton formula [12]. In [11], four possible cases
of wheel-terrain interaction were noted. The first
case is a rigid wheel moving over rough terrain.
The second case is a rigid wheel moving over
deformable terrain. The third case is a deforma-
ble wheel moving over a deformable terrain. The
fourth case is a deformable wheel moving over
rough terrain. Although many different types of
models (i.e. finite elements, discrete elements,
empirical) have been developed for each ofthese
four cases, the focus here is on analytical models
[12]. At the same time, in these works, the ran-
dom nature of friction associated with the change
ofsign and the consideration of abrupt changes in
the load were ignored. For highly loaded robots,
dynamic performance indicators become essen-
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tial because they have a significant impact on the
modes of movement ofthe system.

Relevance in the design of a transport mo-
bile robot is the description of its dynamics un-
der the influence of external disturbances of a
stochastic nature on the cart, the study of the ro-
bot’s response to such disturbances (a jump-like
change in the gravity of the load) and the con-
sideration of nonholonomic constraints (wheel
slippage).

In this regard, the practical application ofa
mobile transportrobot requires extensive research
ofthe dynamics and evaluation ofthe accuracy of
the quality of movement in order to optimize the
developed control system, while not changing the
developed concept and hierarchical structure of
the intelligent control system MR [13,14,15].

The novelty ofthis article is the differential
equations of motion of a mobile robot obtained
using the variational principle of least constraint,
known as the Gauss principle.

Algorithms and numerical programs have
been developed for analyzing and deriving cal-
culated formulas of disturbing forces, including
stochastic ones, due to random obstacles under
the wheels, abrupt changes in the load and its
movement on the upper platform, sudden chang-
es in the directions of movement, acceleration
and braking ofthe robot in a short period oftime.

Derivation of dynamic equations. The uni-
versal platform of the mobile robot consists of a
frame on which four wheels and two electric mo-
tors are attached (Figure 1). The two rear wheels
are driving. The robot platform is a frame ofvari-
able length on which various mechanisms can be
installed.

Figure 1 - Calculation scheme of a mobile robot for
deriving equations of motion
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We introduce the following coordinate sys-
tems: a fixed coordinate system Oxyz ?the plane
ofwhichO-ry coincides with the horizontal rough
plane on which the wheels of the robot roll, and
the movable system " X+Y:2 1 starting at point A,
rigidly connected to its platform (Figure 1). At
the same time, the axis Ayzxdirected along the
linetT3C4, and the center of gravity ofthe robot C+
lies on the axis Axu being the axis of synmietry
ofthe chassis.

When modeling the movement of a mo-
bile robot, we introduce a number of conditions:
a) the robot is considered as a system of abso-
lutely rigid bodies; c¢) the movement is carried
out without slipping; d) the masses of the front
wheels, gears of reduction gears are considered
equal to zero; c) the robot moves with the driven
wheel forward.

Communication equations. The position
of the bodies of the mobile robot in the coordi-
nate system Oxyz is determined by the vector of
generalized coordinates qzx= \x,y,, f 2|r
, where X,¥ - KoopAuHaTbl TO4KM A - the mid-
points ofthe segment connecting the centers C3C4
rear wheels 3,4; @ - angle of rotation around the
vertical platform 1, measured from the axis OXx;
@r-'@r - angles of rotation of the driving wheels
relative to the horizontal axes. Accordingly, the
vector of generalized robot velocities has the
form q = \xryrdp,p 1rep2|r.

The platform angular velocity vector is de-
fined as /1 = \0,0,®' |r, where vector Q given
by projections on the axes Axyz. The vectors
of the angular velocities of the drive wheels are
determined by the relations: r,
N2= \n,d2,¢ wyr, where given as pro-
jections on the axes A*iyiz

The speeds of the points of contact of the
driving wheels with the surface can be deter-
mined from the equations:

D-oy
VP =V +[n,i\ +[n21TI
where * - linear velocity vector of point A
ofthe platform; “ps- contact point velocity vector

~3 left wheel; - contact point velocity vector A4
right wheel; » = AC3 = AC4-halfthe distance

a = - "

(1)
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between the driving wheels; r ~ C*7* -
- drive wheel radius.

Since the movement of the drive wheels
occurs without slipping, it means V@ — -
Taking into account this condition, based on the
projection of equation (1) on the axis Ax1ly 1z 1we
obtain three independent equations of non-inte-
grable (non-holonomic) constraints:

W3yl lip +y cosiip
VWP3xlI = x cosip + y sinip + bp—rpx = 0,

NN

rP4yl

WPXv| = x cosip + ysinip—bp—rdn = 0,(2)
Vector of pseudovelocities (j1= Ne *])
includes two elements: velocity

V =xcos/ +ysin/ points A, angular velocity
of platform Q=uy. The relationship between the
generalized and pseudovelocities ofthe system in
this case has the form

q=Hii 3)

Let’s write down the matrix H:

Dependence (3) between generalized ve-
locities and pseudovelocities can be rewritten in
scalar form:

X = Vcosip9y = Vsinip” 4
A vim = v-rn
P=n, ££= — |, 2= —

Dynamic equations. The derivation of dif-
ferential equations will be carried out using the
variational principle of least constraint, known as
the Gauss principle. As a measure of coercion,
a value Z is taken in the form of the following
functional

r=ilfl, m@, -  +m(y,-  +A,-1)1(5
Here Fixr'Fiy-  projections of external
forces reduced to the center of mass, moment

of external forces, mass and moment of
inertia relative to the center of mass of the i-th
link, Sxir3y*at} - variations of projections of
the acceleration vector and angular acceleration.

The equations of dynamics of a mechanical
system are obtained from the stationarity condi-
tion in variational form and the necessary condi-

Sz

tions for the minimum of the functional (5)

=, 9 = 6)
The moving parts of the mobile robot are
the platform and wheels, which, relative to the
plane of their location, make flat movements.
The following designations are accepted: rnzt
- CyMMapHas macca nnatqopmsbl, j+ - the mo-
ment of inertia of the robot about the vertical axis
passing through its center of mass Cb a = AC+
- distance from point A to the center of gravity
of the robot C+ m k - total weight of the driving
wheel, ly - moment of inertia of the wheel about
the horizontal axis.

Then functional (5) for the considered mo-
bile robot can be written in the form
Z="ml(v-y f +(1+ T
(*-» )"+ (@))
where Mfrl,Mfl — moments of rolling friction
on the driving wheels; Mdl , Md2 - driving mo-
ments; P - projection of the main force on the
direction of velocity v, brought to point A plat-

form, MR- main moment of forces acting on the
platform.

In equation (7) from system (4), we substi-
tute the last two equations, which are presented
in the form

A = btV + bi
@ =b+V-b2n (8)
where =Vr, =Vr.
Then
+0y+mkr2
(**+M +ft, +mkr>) -M - )], ©

From conditions (6) one can obtain four
equations. The first condition satisfies the equa-
tion
SZ —5™ 7T Sit-b — 0 (tO)

Note that synchronous variation takes place
here, in which only the acceleration remains

Vit =Viz,
variation:

Wii o Wiz, which is called Gaussian

Sri=1 Swi(At)2 (1)
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where At - short time, Srt- displacement vector

variation, Swi- acceleration vector variation.
Taking into account the independence of

pseudoaccelerations ™ —” n© = &to fulfill
equation (10), it is necessary that
=0B2(~A4 2 =0. (12)

Equation (12) is used to determine the driv-
ing forces , M.

The equations of motion of the mobile ro-
bot will be obtained from the equations

27=0 ®-=0

'm " (13)

Let us assume that DC motors are installed
on the driving wheels [13,17]. Then, based on
equations (12) and (13), we obtain the equations
of the dynamics of a mobile robot in the follow-
ing form:

(14)

where £- inductance; ilfi2

- currents in the armature circuits;
R —armature circuit resistance; UIf U2 - cir-

cuit voltage (control parameters); n - gear ratio.
The coefficient of electromechanical inter-
action with is determined as follows:

(15)
where - motor starting torque; - rated
motor torque; yH, UH- respectively, the rated an-
gular velocity and the rated voltage ofthe elec-
tric motor.

Values If Bk
we define as follows:
- SN, sign(<pk) rqk @ 0,
—Ci > o = 0, \ncik\ < SNt

1,2) from equations (14)

Mfrk

- (16)
where fi — KoapnumeHT TpeHna KaveHns; Nk
— normal reaction force ofthe horizontal refer-
ence plane acting on k - driving wheel.
Discussion of results and conclusion. As
a result, based on the Gauss principle of least
constraints, the equations of dynamics of a four-
wheeled mobile robot with two driving wheels
are obtained. Equations (14) take into account
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the moments of friction force that occur between
the wheels and the web, as well as the dynamic
characteristics of DC motors. The unevenness of
the web when modeling the dynamics ofamobile
robot is carried out by adding to the system (14)
the following equation

mz = —(z —h) —a(z —h),

where the functions h(z) of the road rough-
ness and has the form ofa function with arandom
amplitude.

b)
Figure 2 - Graphs of the movement of a mobile robot:
a) the trajectory of movement;
b) animation of moving the robot platform

In the Maple analytical computing sys-
tem, a program was compiled for simulating the
movement of a mobile robot based on equations
(14) and calculating the transverse vibrations of
the robot body when moving along a road with
bumps based on equation (17). Figure 2 shows
the simulation results. Figure 2a shows the tra-
jectory of the center of gravity of the mobile ro-
bot with the speed V and the angular velocity of
rotation Q of the platform relative to this center.
The turn can be clearly seen in Figure 2b, which
shows the animation of platform movements
along the center trajectory. Figure 3 shows a plot
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ofthe speed V of the platform along the trajecto-
ry. The movement speed is controlled by chang-

Figure 3 - Graph of the change in the speed V of the
platform along the trajectory

The segments of the piecewise linear char-
acteristic determine the number of segments that
are involved in the fitting procedure. The fitting
method is an exact method for solving a particu-
lar equation.

In the Maple system, a program was com-
piled for solving the differential equation of a
mobile robot, taking into account (17). Let’s take
the  coefficient of road resistance ?

1600 -
1500-
1400-
1300-

1200-

a)

Figure 4 - Simulation of the dynamics of the robot, taking
into account the unevenness of the web: a) a graph of
the change in the function h(z); b) the graph of the speed
during the acceleration of the mobile robot for 5sec and
the abrupt change in the load att =2 ¢

Graph 4b shows the acceleration rate ofthe
mobile robot for 5 seconds. As can be seen from
the graph, after the mass was added (t = 2 s), the
acceleration speed became slow.

In addition, the value of the functional is
indirectly related to the reactions in kinematic
pairs according to the equality obtained from the
Gauss principle

2 1yRL
2ti m

(18)

The condition that the quantity is minimal
for actual motion leads to an extreme property of
constraint reactions: for actual motion, constraint
reactions are minimal.

For example, in order to estimate the main
vector of force and the main moment of forces
reduced to the center of gravity of the platform,
we have:

(19)

where - the reaction of the connection
between the platform and the wheels, reduced to
a point A, M12- moment of coupling reactions
between the platform and wheels, relative to the
point A

To find /112 n
for (19).

Thus, the Gaussian principle of no less
compulsion made it possible to simplify the pro-
cedure for deriving the equations ofthe dynamics
ofamobile robot, taking into account the perturb-
ing forces, and to evaluate the reactions between
individual moving parts (links) ofthe robot. The
equations of dynamics obtained on the basis of
the Gauss principle are correct and make it possi-
ble to simulate the motion of the MR taking into
account random perturbing forces.

needs to (7) be shaped
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A.K. Tynewos, A.XK. CeiigaxmeTt, A.E. A6gypaumos, A.H. Kaman BbIBOJ, NAHANIN3 YPABHEHWW
OVUHAMUKN MOBUNBHBLIX POEOTOB C YYETOM C/IYUYAVHbBIX BO3MYLLAKLINX CUNT HA OCHOBE
NMPNHUNNA HAMMEHBLWETO MPUHY>XAEHWA TAYCCA

AHHOTauusa. B paboTe BbIBOA YpaBHEHUA AMHAMUKM 4YETbIPEXKONECHOT0 MO6ULHOrO poboTta
OCYLLeCTB/SETCA C UCMO/Ib30BaHNEM BapuaLMOHHOIo NPUHLMNA HauMeHbLUEro NPUHYXAEHUS, N3BECTHOIO Kak
npuvHumn Faycca. MNosy4yeHbl ypaBHEHUS HEro/I0OHOMHLIX cBA3eil. CocTaBfieHa (PYHKUMS Mepbl NPUHYXAEHWUS
YyeTbIPpeXKONECHOro MOOWABHOro poboTa. YpaBHEHWS AMHaMWKM Ha OCHOBe npuHumna [aycca nosyyeHbl ¢
y4yeToOM AMHAMUYECKON XapaKTepuCcTUKM ABYX ABUratesieil NoCTOSAHHbIM TOKOM. [peanoxeHa MeToAukM yyeTta
CWN TPEeHUs Ha Koflecax M cnyyaliHbiX BO3MYLLEHWA 3a cYeT HepoBHOCTWM nonoTtHa. Ha nnatdopme Maple
paspabotaH anroputMm M nporpaMmma MoAesIMpoBaHnsa AWHaMWKA MOOWABHOINo poboTa Ha OCHOBE NpuHUMNa
laycca v foka3aHa KOPPEKTHOCTb M NPaBUIbHOCTb MOJYYEHHbIX ypaBHEHUI ABUXEHUSA poboTa.

KnwoueBble cfioBa: MOOWAbHLIA KONecHbli  poboT, npuHUMN laycca, YpaBHEHUS OUHAMUKW,
MoZennpoBaHue ABWXEHUS, BO3MYLLAKOLINE CUMbI.
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A.K. Tynewos, AXX. CeipaxveT, A. E. Abgypaumos, A.H. Kaman EL, A3 WEKTEY TFAyCcC
MPUHUWN1 HEM131HAE KESAENCOK KO3AbIPIbIW KYWTEPA1 ECKEPE OTbIPbIMN, XbI/HXbIMA/bI
POBOTTAPAbIL, ANHAMUNKACDBIHbLIL TELAEYNEPIH WbITAPY XXOHE TANOAY

TYiHoeme. Byn XymbicTa TepT AOHranaktbl Xbl/DKbIMasibl PO6OTTbIH AUHAMUKACBIHbIH TeHaeynepbl
Wweirapy Faycc npuHUuni gen atanartbiH €H a3 LWeKTeyAll BapuaLuanblik NPUHUUNIH KongaHy apkbiabl XY3ere
acblpblnagbl. T0NOHOMAbIK eMecC LeKTeynepAiH TeHaeynepi anoiHabl. TepT AoHranakTel MO6WAbAI PO6OTTbIH
MBX6Yprey (PyHKUMACBIH KypacTblpbingbl. Faycc npuHUmMNiHE Hen3aesireH AMHaMuKanbiK TeHaeynep TypakThbl
TOKTbIH €0 KO3ranTKbIWbIHbIH AMHAMUKANbIK cunaTTaManapbiH eckepe OTblpbin anbiHagbl. [eHrenekrepaeri
Yiikenic KYLWTEPiH X3He KeHenTiH kedip-6yaplpnbiFbiHA 6GanaHbiCThl Ke3gencok 6y3binynapabl ecenke
any 8gictepi ycbiHblAraH. Maple nnatdopmacbiHga [aycc npuvHUMAI GOMbIHWA Xbl/DKbIMasibl POBGOTTbIH
OVHamMuKacblH MoJenbaey anropuTtMmi MeH 6Gargapnamachbl xacasblf, pob0TTbiH Ko3ranbiC TeHAaeynepbluy
asniblHraH AypbICTbIK MEH AYPbICTbIMbl A3NenaeHaK

TY”Hdi cB3gep: K,03ranmasbl 4oHranakTbl po6oT, [aycc npyHumMny AMHaMuka TeHaeynepi, Ko3ranbiCTbl
mMoAaenbaey, kegepri KYwTepi.
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